
Eco 590, J. Sandford, fall 2008 September 26, 2008

Homework 3
due 9/22/08

Problem 1 (Closed sets) Consider Rn with the Euclidean metric. Prove that F ⊂ Rn is closed if and

only if the complement of F is open.

Suppose F is closed. Choose x ∈ F c. Then x is not a limit point of F , so there is some ε > 0 such that

B(x, ε)
⋂
F is empty, and thus B(x, ε) ⊂ F c. That this is true for any x ∈ F c implies f c is open.

Now, suppose F c is open. This means that for any x ∈ F c, there is some ε > 0 such that B(x, ε) ⊂ F c,

which, in turn, means that F
⋂
B(x, ε) is empty. Therefore, x is not a limit point of F . That F has no limit

points in F c implies F is closed.

Problem 2 (Intersections of open sets) In Rn with the Euclidean metric,

a. Prove that the intersection of any finite number of open sets is an open set.

For {Oi}ni=1, pick x ∈
⋂n
i=1Oi. That x ∈ O1 ⇒ B(x, ε1) ⊂ O1 for some ε1 > 0. That x ∈ O2 ⇒ B(x, ε2) ⊂

O2 for some ε2 > 0. And so on, giving us ε1, ε2, ..., εn. Set ε = min{ε1, ε2, ..., εn}. It is clear that B(x, ε) ⊂ Oi

for each i, and thus B(x, ε) ⊂
⋂n
i=1Oi, so

⋂n
i=1Oi is open, QED.

b. Give an example of an infinite (countable or uncountable) collection of open sets such that the

intersection is not open. Be as explicit as possible.

This will work for sets {An} which get ‘smaller’ in the sense that An ⊂ An−1 for all n, such that the intersection⋂
An is non-empty. Consider for example in R An = (1 − 1

n , 3 + 1
n ), which has intersection ∩An = [1, 3] (a

relatively simple proof will establish this).

c. Give an example of an infinite (countable or uncountable) collection of closed sets such that the union

is not closed. Again, be very explicit about what the union is and how you know it is not closed.

This will work for sets {An} which get ‘larger’ in the sense that An ⊃ An−1 for all n, such that the union⋃
An 6= Rn. Consider for example in R An = [1− n

n+1 , 3 + n
n+1 ], which has intersection

⋂
An = [1, 3].

Problem 3 (Closed sets II) Consider Rn with the Euclidean metric. Prove the following statement:

F ⊂ Rn is closed if and only if for every sequence {xn} contained in F ,

lim
n→∞

xn = x ⇒ x ∈ F. (1)

Again, use the definition of ‘closed’ given in class.

First, if every sequence in F converges to a point in F , consider a point x ∈ F c. If x were a limit point of

F , then for every n = 1, 2, ..., there would exist a point yn ∈ F such that yn ∈ B(x, 1
n ). But then this would

describe a sequence yn which converges to x ∈ F c, an impossibility. Conclude that x is not a limit point of F

for all x ∈ F c, and thus that F is closed.

Now suppose that F is closed. We show that every sequence contained in F must converge to a point in F .

Suppose this were not the case. Then, there would exist a {xn} such that xn → x ∈ F c, which implies that x is a

limit point of F , as for any ε > 0, B(x, ε) contains terms from {xn}, which are in F . But this is a contradiction,

as F is closed. Conclude that any sequence in F converges to a point in F .

Problem 4 (Extreme values) (Sundaram page 68, #16) Find the supremum, infimum, maximum, and

minimum, if they exist, for the following sets:
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a. A1 = {x ∈ [0, 1] : x is irrational}supA1 = 1, inf A1 = 0,maxA1,minA1 do not exist.

b. A2 = {x : x = 1
n , for n = 1, 2, ...}supA2 = maxA2 = 1, inf A2 = 0,minA2 does not exist.

c. A3 = {x : x = 1− a
n , for n = 1, 2, ...} (note: take a to be some real number in (0, 1))supA3 = 1,maxA3

does not exist, minA3 = inf A3 = 1− a
d. A4 = {x ∈ [0, π] : sin(x) > 1

2}supA4 = 5π
6 , inf A4 = π

6 , maxA4,minA4 do not exist.

e. A5 = φ, the empty set (Take φ ⊂ R here. Then every element of R is both an upper and a lower bound

of φ, and so there is clearly no least upper bound or greatest lower bound. The max and min do not exist either.

Problem 5 (Convex sets) A set A is convex if, for every x1, x2 ∈ A, and for every α ∈ (0, 1),

αx1 + (1− α)x2 ∈ A (2)

(this is the usual definition from class).

If a set B satisfies 1
2x1 + 1

2x2 ∈ B for all x1, x2 ∈ B, does it follow that B is convex?

No. Consider the set Q ⊂ R. For any q1, q2 ∈ Q, 1
2q1 + 1

2q2 ∈ Q, but, for example, 1
π q1 + (1 − 1

π )q2 /∈ Q,

and so Q is not convex.

Problem 6 (Metric spaces and open sets) Fact: sets are open and closed relative to the metric space

in which they are contained. That is, a set which is open in metric space (A, d1(·)) may not be open when

seen as a subset of (B, d2(·)).
Demonstrate your understanding of this by arguing that the set (0, 5) is open when seen as a subset of

(R, | · |), but not open as a subset of (R2, | · |), where | · | is the standard Euclidean metric.

In R, B(x, ε) = (x − ε, x + ε). In R2, B(x, ε) = {(y1, y2) ∈ R2 :
√

(y1 − x2)2 + (y2 − x2)2. Clearly, the

interval (0, 5) is open in R. To see it is not open in R2, pick point (2, 0) and note that B((2, 0), ε) = {(y1, y2) :√
(y1 − 2)2 + y2

2 < ε}, a circle containing, for example, the point (2, 1
2ε), which is not in the segment (0, 5) of

the horizontal axis.

Problem 7 (Rational numbers) Q = {x ∈ R : x = a
b , for integers a, b} denotes the set of rational

numbers. Is Q an open subset of the Euclidean space (R, | · |), where | · | is the Euclidean metric? Is Q a

closed subset of the same?

Q is not open in R, as B(1, ε) = (1− ε, 1 + ε), which contains 1
π + (1− 1

π )(1 + ε), an irrational number.

Problem 8 (Open covers) An open cover of a set A ⊂ Rn is a collection of open sets {Oi}i∈I , Oi ⊂ Rn

for each i ∈ I, such that A ⊂ ∪i∈IO1.

a. Go as far as you can in proving that every open cover of the interval [0, 1] ⊂ R has a finite subcover,

that is that for any sets {Oi}i∈I such that [0, 1] ⊂ ∪i∈IOi, there exist n elements of {Oi}i∈I , call them

Oi(1), Oi(2), ..., Oi(n), such that [0, 1] ⊂ ∪nj=1Oi(j).

b. Give an example of an open cover of (0, 1) which has no finite subcover. Consider the collection of open

sets centered at 1
n with radius 4

5 ( 1
n −

1
n+1 ) = 4

5
1

n(n+1) , for n = 1, 2, 3, ... I leave it as an exercise to verify that

these sets cover all of (0, 1) and that there is no finite subcover. For the latter, observe that the points 1
n each

fall into exactly one set, so removing any of these sets would destroy the cover. As there are countably many

such sets, there is necessarily no finite subcover. Note that the point 0 is not covered by this collection. Were

we required to cover 0, the set containing 0 would also contain infinitely many of the points 1
n , allowing us to

“discard” all but a finite number of sets from the above collection and still cover (0, 1).


