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Homework 4

answers

Problem 1 (Weierstrass theorem) (Sundaram, page 98 #13) A monopolist faces a downward sloping
inverse-demand curve p(z) that satisfies p(0) < oo and p(z) > 0 for all z € R,. The cost of producing x
units is given by c¢(z) > 0, where ¢(0) = 0. Suppose p(-) and ¢(-) are both continuous on R . The monopolist
wishes to maximize profit, 7(z) = zp(x) — ¢(x), subject to the constraint z > 0.

a) Suppose there is 2* > 0 such that p(z*) = 0. Show that the Weierstrass theorem can be used to prove
the existence of a solution to this problem. As p is downward-sloping, p(x) < 0 for z > x*. In this range,
m(x) = xp(r) — c(z) < zp(x) < 0, where the first inequality follows because ¢(x) > 0 and the second because
p(x) <0 for x > x*. Clearly, 7(0) = 0, and so we can conclude that the maximizer of 7 over [0, 00) is not in the
interval (z*,00). This leaves the interval [0, 2*], a closed and bounded interval; the continuous function 7 thus
obtains a maximum on [0, z*] by the Weierstrass theorem, and as this maximum is surely greater than any value
7 takes on over (2*,00), we can conclude that a maximizer of 7 exists on [0, c0).

b) Now suppose instead there is £ > 0 such that c¢(z) > zp(x) for all z > &. Show, once again, that the
Weierstrass theorem can be used to prove existence of a solution.A similar argument to that of 1 supplies that
m(0) > m(x) for all > &, and as the continuous function 7 obtains a maximum on the closed and bounded
interval [0, Z], we can conclude that 7 has a maximum on [0, c0).

c) What about the case where p(z) = p for all x (the demand curve is infinitely elastic) and c¢(x) — oo
as  — oo?That ¢(x) — oo ensures that for some & we have that ¢(z) > xp(x) for & > &. The proof of part b)

then applies.

Problem 2 (Weierstrass theorem II) (Sundaram, page 97 #2) Suppose A C R™ is a set consisting of a
finite number of points {x1, z2, ..., 2, }. Show that any function f: A — R has a maximum and a minimum
on A. Is this result implied by the Weierstrass theorem? Explain.

textsfThe function f takes on values f(x1), f(x2), ..., f(x,); this finite list necessarily has a largest member,
and so f obtains a maximum on A. This is not immediately implied by the Weierstrass theorem as f is not

continuous on A.

Problem 3 (Weierstrass theorem IIT) (Sundaram, page 97 #1) Prove or counter the following statement:

If f is a continuous real-valued function on a bounded (but not necessarily closed) set A, then sup f(A)
is finite. (nb. sup f(A) =sup{y € R:y = f(x) for some = € A}).This is false; consider the interval (0,1) and
the function f : (0,1) — R described by f(x) = 1. This is continuous on the domain, but goes off to infinity

as x approaches 1, and so there does not exist a finite sup f(z) on (0, 1).

Problem 4 (Sequences) (Sundaram, page 67 #3) Let {z,}, {yn} be sequences in R” such that z,, — x
and y, — y. For each n, let z, = z,, + yn, and let w, = z,, * y,. Show that z, — (x + y) and w, — = *y.
Since x,, — x, we know that for any € > 0 there is some N, such that n > N, = |z, — x| < €. Likewise, that
Yn — Y, we know that for any v > 0 there is some N, such that n > N, = |y, —y| < . Now, for any ¢ > 0,
set € =y = 3. For n > max{Ne, N, }, |20 — 2| = |2 + ¥ — 2 — y| < |20 — 2| + |yn — y| < + § =4, where
the first inequality is the triangle inequality. We have thus shown that for any > 0, there exists N5 such that

|z, — 2| < 6, and thus that z, — z. A similar proof should work for w,,.
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Problem 5 (Sequences IT) In R™ with metric d(x,y), a sequence {x,} is called a Cauchy sequence if, for
any € > 0, there exists a number N(e) such that n,m > N(e) implies that d(x,,z,) < €.

Prove that any convergent sequence in R™ is a Cauchy sequence.

If a sequence x,, converges to a point x, than, for any § > 0 there exists N5 > 0 such that n > N implies
that d(x,,r) < 6. Pick 6 = §, and note that, for n,m > N5, d(2, vm) < d(2n, 1) + d(2m,2) < §+ 5 =€,
with the first inequality being the triangle inequality.

Problem 6 (Metric spaces) Prove or counter each of the following statements:

a. If A is a non-empty closed subset of R, and  ¢€ A, there is a point in A that is nearest to x, under
the metric d(z,y) = /2, (z; — y;)2. Pick any point y € A, and then define B = {z € R? : d(z,z) < d(y,z)}
to be the set of all points in R? within distance d(z, %) of point z, i.e. at least as close to = as y is. The closest
point to x in A is surely in B, as y is in both A and B. Now, B is simply a circle containing its boundary, and
so is closed. Intersections of closed sets are closed, and so AN B is closed, and is clearly bounded. d(z,y) is
continuous in y and thus obtains a minimum in y on A N B by the Weierstrass theorem, and so there is a point
in A which is closest to x.

b. If A is a non-empty open subset of R™, and x ¢ A, there is a point in A that is nearest to x, under the
metric d(z,y) = /X", (z; — y;)%. This is false; suppose n =1, and let A = (0,1). Consider the point z = 7.
There is no point in A which is closest to 7 (a simple proof will show this).

c. If A is a non-empty closed and bounded subset of R, and x ¢ A, there is a unique point in A
that is nearest to x, under the metric d(z,y) = /X" ,(x; — ;). The point need not be unique. Suppose
A={(1,00}U{(-1,0)}, and x = (0,0). Both points in A are then equidistant from z.

Problem 7 (Basic optimization) Prove or counter the following statement:
If g : R — R is a function (not necessarily continuous) which has a maximum and minimum on R, and if

f:R — R is continuous, h(z) = f(g(x)) necessarily has a maximum on R. False. Consider

-1, if v < —1
xz, ifxze(-1,0)
-1, ifze|0,1)
1, ife>1

g(x) =

and f(z) = —22. Then, h(z) = f(g(x)) has no maximum. To see this, h(z) = —1 for all x outside of the interval
(=1,0), and h(z) > —1 for all z € (—1,0). But, for any = € (—1,0), h(3z) > h(z), and so no maximum can

exist in this interval.



