Homework 9 due 11/17/08

Problem 1 (Identifying concave functions) (Sundaram, page 198) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = ax^2 + by^2 + 2cxy + d$. For what values of a, b, c and d is f concave?

Problem 2 (Properties of concave functions I) (Sundaram pg 198) Let $f : \mathbb{R}^n_+ \to \mathbb{R}$ be a concave function satisfying f(0) = 0. Show that for all $k \ge 1$ we have $kf(x) \ge f(kx)$. What happens if $k \in [0, 1)$?

Problem 3 (Identifying concave and convex functions) (Sundaram, page 198)

Show that the affine function $f : \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) = a \cdot x + b$, $a \in \mathbb{R}^n$, $b \in \mathbb{R}$ is both convex and concave on \mathbb{R}^n . Conversely, show that if $f : \mathbb{R}^n \to \mathbb{R}$ is both concave and convex, then it is an affine function.

Problem 4 (Properties of concave functions II) (Sundaram pg 198) Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be concave functions.

- a. Give an example to show that their composition $f \circ g$ is not necessarily concave.
- b. Is the product f * g concave? Prove or provide a counter example.

Problem 5 (Constrained maximization) (Sundaram, pg 200) Let T be any positive integer. Consider the following problem:

$$\max \sum_{t=1}^{T} u(c_t)$$

subject to $c_1 + x_1 \le x$
 $c_t + x_t \le f(x_{t-1}), t = 1, 1, ..., T$
 $c_t, x_t \ge 0, t = 1, 2, ..., T$

where $x \in \mathbb{R}_+$, and u and f are nondecreasing continuous functions from \mathbb{R}_+ into itself. Derive the Kuhn-Tucker conditions for this problem, and explain under what circumstances these conditions are sufficient.