Homework 4

due 3/1/2011

Problem 1 In the signaling games in figures 7 and 8, compute all sequential equilibria and determine which of them satisfy the intuitive criterion.

Problem 2 In the signaling game in figure 9, find a sequential equilibrium in which message 2 is not played. Does this equilibrium satisfy the iterated intuitive criterion?

Problem 3 Consider infinite repetitions of the games in figures 1, 2, and 3. In each case, sketch the set of payoff vectors attainable in a subgame perfect equilibrium, and those which are attainable in a subgame perfect equilibrium using Nash reversion strategies. (Suppose that the discount rate is very close to one.)

Figure 1: Normal form game 1

Figure 2: Normal form game 2

	2		
	L	R	
T	2, -2	4, 1	
1 M	1, 3	0, 0	
B	5, 3	3, 4	

Figure 3: Normal form game 3

Problem 4 Consider an infinite repetition of the normal form game in figure 4. For what values of δ can the play path $\{(C, C), (C, C), ...\}$ be supported in a Nash equilibrium? What about in a subgame perfect equilibrium?

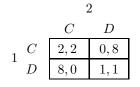


Figure 4: Normal form game 4

Problem 5 Consider an infinite repetition of the normal form game in figure 5.

a. Show that payoffs of (4,4) can be supported in a subgame perfect equilibrium using a Nash reversion strategy if and only if $\delta \geq \frac{1}{2}$.

b. Show that for every $\delta \geq \frac{1}{4}$, there is a subgame perfect strategy profile yielding payoffs of (4, 4).

		2	
	a	b	c
A	1, 2	5, 1	1, 0
1 B	2, 1	4, 4	0, 0
C	0, 1	0, 0	0, 0

Figure 5: Normal form game 5

Problem 6 Consider the normal form game G in figure 6 below.

a. Determine the set of Nash equilibria of the normal form game.

b. Let $G^{\infty}(\frac{3}{4})$ be an infinite repetition of G with common discount rate $\frac{3}{4}$. Sketch both the set of feasible payoffs of $G^{\infty}(\frac{3}{4})$ and the set of payoffs which are sustainable in some subgame perfect equilibrium of $G^{\infty}(\frac{3}{4})$.

		2	
	X	Y	Z
A	10, 0	0, 10	0, 10
B	9, 1	1,9	1,9
1 C	2, 8	8, 2	1,9
D	2, 8	2, 8	7,3
E	4, 6	5, 5	6, 4

Figure 6: Normal form game 6

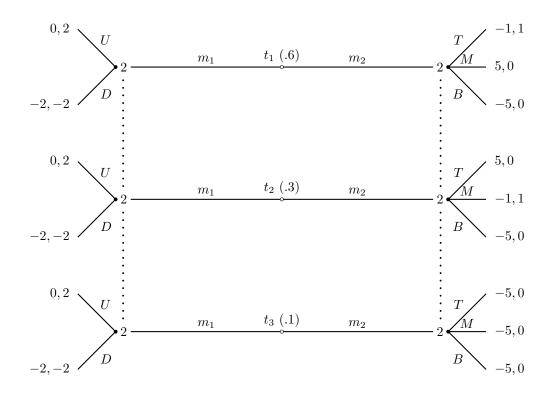
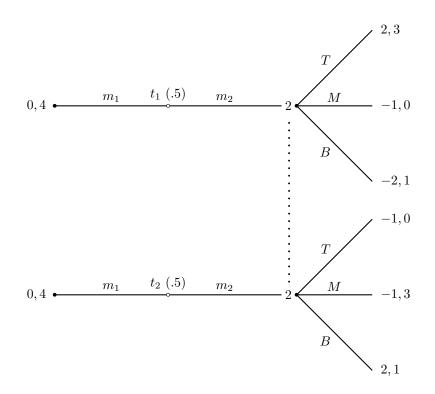


Figure 7: Signaling game 1



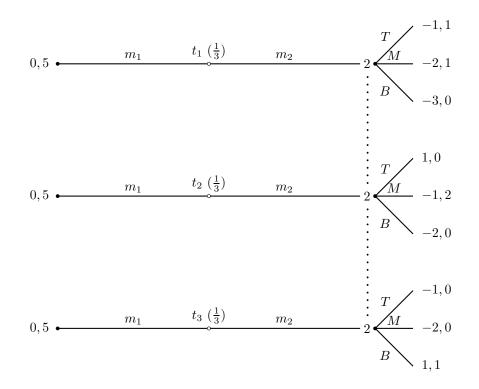


Figure 9: Signaling game 3