Expected utility

Let Z be some set of prizes/outcomes (for example, Z could include three dollar amounts, \$100, \$10, \$0, and you will get one).

Let \succeq denote **preferences** over Z. As it turns out, we need preferences not only over Z, but over ΔZ , the set of **compound lotteries** from Z (i.e. is a 95% chance you get \$0 and 5% chance of \$100 better or worse than a 100% chance of \$10?).

As usual, $p \succ q$ means $p \succeq q$ but not $q \succeq p$.

Axioms on preferences

(VNM1) (weak order): \succeq is complete and transitive

(VNM2) (continuity): for $p, q, r \in Z$ such that $p \succ q \succ r$, there are numbers δ and ϵ , both in (0, 1) satisfying

$$(1-\delta)p + \delta r \succ q \succ (1-\epsilon)r + \epsilon p$$

(VNM3) (independence of irrelevant alternatives): For all $p, q, r \in \mathbb{Z}$, and for all $\alpha \in [0, 1]$,

$$p \succeq q \iff \alpha p + (1 - \alpha)r \succeq \alpha q + (1 - \alpha)r$$

The following two statements are equivalent:

1. \succeq satisfies VNM1-VNM3

2. There exists a function $u: Z \to \mathbb{R}$ such that

$$p \succeq q \iff \sum_{z \in Z} u(z)p(z) \ge \sum_{z \in Z} u(z)q(z)$$