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Homework 2

due 2/8/2012

Problem 1 A newspaper runs the following contest: Each participant mails in a postcard on which he

writes an integer between 0 and 1000 (inclusive). Given the entries, the target integer is defined to be 9
10

times the highest entry, rounding downward if the result is not an integer. All participants who chose the

target integer split a $10,000 prize.

a. Suppose this contest is modeled as a simultaneous move game among 100 players. Using only common

knowledge of rationality, determine a unique prediction of play.

b. If you entered such a contest, what number would you personally play, and why?

Problem 2 Consider a 3-player, simultaneous move game with S1 = {L,M,R}, S2 = {U,D}, and S3 =

{l, r}. Figure 1 gives player 1’s payoffs from each of his three pure strategies conditional on the strategy

choices of players 2 and 3. So, for example, if 2 plays U and 3 plays l, u1(L) = π + 4ε, u1(M) = π − η, and

u1(R) = π − 4ε. Assume that pi, ε, and η are strictly greater than 0, and that η < 4ε.

Player 2’s strategy

Player 3’s strategy

l r

U π + 4ε, π − η, π − 4ε π − 4ε, π + η
2 , π + 4ε

D π + 4ε, π + η
2 , π − 4ε π − 4ε, π − η, π + 4ε

Figure 1: Player 1’s payoffs (u1(L), u1(M), (u1(R)) are depicted.

a. Argue that pure strategy M is never a best response for player 1 to any mixed strategy combinations

for players 2 and 3.1

b. Show that pure strategy M is not strictly dominated for player 1.

c. Which (generically) eliminates more strategies? Iterated removal of strictly dominated strategies or

iterated removal of non-rationalizable strategies?

Problem 3 Find all Nash equilibria of the normal form game in figure 2:

1

2

a b c

A 2, 4 10, 2 2, 0

B 4, 2 8, 8 0, 0

C 0, 2 0, 0 0, 0

Figure 2: game for problem 3

1Hint: this problem is from MWG, and I’m not sure why three variables are needed to write player 1’s utilities. I would

start by simplifying player 1’s utility. To do so, remember that VNM utility functions are only unique to affine transformations.
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Problem 4 Consider the simultaneous-move game in figure 3.

1

2

a b c

x 6, 0 0, 1 0, 1

y 0, 1 6, 0 0, 1

z 5, 1 5, 1 5, 0

Figure 3: game for problem 4

a. Draw the best response correspondences for player 1 and player 2.

b. Describe the set of rationalizable strategies for player 1 and player 2.

c. Find all Nash equilibria of this game.

Problem 5 Compute all Nash equilibria of the reduced normal form of the game in figure 1 of HW1.

Problem 6 Compute all Nash equilibria of the symmetric normal form game in figure 4:

1

2

L C R

T 0, 0 6,−3 −4,−1

M −3, 6 0, 0 5, 3

B −1,−4 3, 5 0, 0

Figure 4: game for problem 6

Problem 7 Consider the following payoffs for player 1 (player 2’s payoffs are irrelevant to this question):

1

2

l r

T 3, · 0, ·
M 0, · 3, ·
B 2, · 2, ·

Figure 5: game for problem 7

We saw in class that all mixtures of T and M are strictly dominated by some other strategy. Identify,

for each mixture of T and M , a strategy that strictly dominates that mixture. That is, for the mixture

αT + (1− α)M , there is some strategy σ(α) ∈ Σ1 which strictly dominates αT + (1− α)M , and which does

not put positive probability on both T and M . Find σ(α) for all α ∈ (0, 1).


