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Abstract

We develop a theoretical model of competitive sports gambling markets in order to address two

empirical puzzles. First, why don’t bookmakers set unbiased lines that try to equalize betting on

both sides, and thus profit from commissions with minimal risk? Second, why is there little evi-

dence of bookmakers competing through lower commissions? We show that the interaction between

a bookmaker’s and gamblers’ private information can induce biased lines even when all players are

maximizing their chances of winning. A bookmaker who believes that a team will win by 7 points

may optimally set a line at, below, or above 7 points, depending on the complementarity or sub-

stitutability of its information with gamblers’ information. This result does not depend on whether

a bookmaker’s information is public or private. We also offer an explanation for persistently high

commissions charged by seemingly competitive bookmakers; these commissions are necessary to

compensate books for assuming the disadvantage of moving first.
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1 Introduction

In 1999, gamblers wagered (mostly illegally) between $80 and $380 billion on sporting events

in the United States.1 This figure has likely increased since that time. Much of this wagering was

“threshold” betting on football and basketball. In this game, the bookmaker (also known as the house,

or bookie in the case of illegal gambling) acts as the first mover by choosing a betting line, either a

threshold margin of victory (a point spread), or total number of points scored between both teams (an

over-under). The gambler moves second by betting on a team in the case of point spread gambling,

or whether more or fewer points are scored in the case of over-under betting. The house charges a fee

(known as a vigorish or vig), often 10% of winning bets, in exchange for its services.2

Despite the widespread prevalence of sports gambling, there has been very little theoretical work

on how bookmakers set lines and what determines the equilibrium vigorish in a competitive market.

This paper attempts to fill this gap. Conventional wisdom suggests that bookmakers set lines in order

to equalize the money bet on both sides. Empirical evidence, however, suggests that this is not true.

Levitt (2004) finds that in only 20% of NFL games is at least 45% of the total money bet on each side,

and that in nearly 10% of games, more than 80% of money is bet on one side. Paul and Weinbach

(2007, 2009, and 2011) provide further evidence from professional football, college football, and

professional basketball. They find that more bets are placed on favorites, especially those playing

away from home, and on overs when making over-under bets.

The most common explanation for this behavior is that gamblers are exogenously biased toward

certain types of bets.3 Levitt (2004), for example, finds that gamblers have a preference for road

favorites when betting on college and professional football. It is then straightforward for bookmakers

to profit from this bias by adjusting these point spreads upward. Our paper offers an alternative

explanation for biased lines.

The paper’s first major contribution is the novel result that bookmakers may bias their lines even

when bettors are maximizing the expected monetary payoff of their bets. It is thus possible to explain

the empirical result of Levitt (2004) without having to assume that gamblers have exogenous biases.

Depending on the distribution of the game’s outcome, the bookmaker may tend to bias its line up-

wards, and thus exaggerate its information, or bias it downwards, dampening its information. While

the paper discusses the incentives behind this bias at length, section 1.1 provides a simple example

with most of the intuition of our formal model.

The second empirical puzzle we address is that while sports gambling appears to be a competitive

market, there is little price competition on vigorishes. In the United States, legal Nevada casinos face

extensive competition from underground bookies as well as online gambling sites of undetermined

legality.4 In the United Kingdom, legal bookmakers proliferate on busy streets.5 Levitt (2004) notes
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“a major puzzle in this industry is the rarity of price competition, i.e. the vig is almost universally 10%.

It is possible that the bearing of risk somehow supports this equilibrium.” He expresses skepticism

that ordinary risk aversion, along with operational costs, are sufficient to support this vigorish. Yet the

persistence of 4.5% commissions suggests either the presence of market power or costs sufficiently

high to sustain these prices. Since the former seems unlikely, we focus on the latter possibility,

viewing the vigorish as compensation for the first mover disadvantage of the bookmaker.6

The lack of competition on vigorishes is especially puzzling given that at first glance, a book-

maker would seem to have low fixed costs and near-zero marginal costs. Furthermore, although small

bookmakers may risk bankruptcy from a run of bad luck, larger operations should be able to aggre-

gate their risk away through better access to capital and playing the game many times. Yet seemingly

competitive books still take approximately 4.5% of every bet in vigorishes. Our paper provides an ex-

planation for this puzzle within a competitive sports gambling market: if gamblers have information

at the time they place their bets that the bookmaker did not have at the time it set its lines, then the

bookmaker is at a first mover disadvantage, even if it has private information of its own. The paper’s

second main result is that, depending on the distribution of information, this first mover disadvantage

alone may be enough to justify a vigorish at least as large as those observed in the data, even in a

perfectly competitive market.

The paper’s third major contribution is that even if the bookmaker has private information at the

time it sets the line, the advantage of such information may be negated by gamblers correctly inferring

the information through the line. We consider two different information regimes. In both regimes,

gamblers possess information that the bookmaker cannot observe. Under public information, the

gambler also has access to the bookmaker’s information. Under private information, the gambler

cannot observe the bookmaker’s information, but instead attempts to extract information based on

the bookmaker’s observed strategy. Surprisingly, under private information, a separating equilibrium

exists in which gamblers are able to fully extract the bookmaker’s information. Equilibrium under

both information regimes is thus identical.

1.1 Example

This paper develops a model of sports gambling which works as follows. First, bookmakers decide

whether to enter the market, and those that do compete over the vigorish. Second, bookmakers receive

some information (which may be either public or private) that allows them to better forecast the result

of a sporting event. Third, bookmakers set their lines.7 Finally, gamblers receive a separate piece

of information that allows them to better forecast the outcome, and they then decide which, if any,

bet to make. In setting the line, bookmakers must therefore act without observing gamblers’ private
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information.8 The following simple scenario captures most of the model’s intuition.

The Miami Heat and Los Angeles Lakers are playing a basketball game. The median outcome is

a tie. Bookmakers then receive information that Luke Walton, the Lakers’ best player, is hurt and will

not play. Conditional on this information, the median outcome is now a 10 point Heat victory.9 A

bookmaker must now set a line without knowing gamblers’ private information. Should it set the line

at the conditional median (Heat by 10 points), bias the line upward (Heat by more than 10 points), or

bias the line downward (Heat by less than 10 points)?

The answer depends on how gamblers’ private information interacts with the bookmaker’s infor-

mation. Suppose that the remaining uncertainty about the basketball game results from Kobe Bryant,

the Lakers’ second best player, being hurt and possibly unable to play. Suppose that the bookmaker

considers both i. and ii. below to be equally likely:

i. Bryant will not play, and the median outcome becomes a 30 point Heat victory. Gamblers

with this information will bet on the Heat for any line in the neighborhood of 10 points. Because

this information has a large effect on the expected result, outcomes around a 10 point Heat victory

are relatively unlikely, and therefore increasing the line above 10 points to make the bookmaker’s

winning more likely has only a small benefit.

ii. Bryant will play, and the median outcome becomes a 5 point Heat victory. Now, gamblers

will bet on the Lakers for any line around 10 points. However, outcomes in the neighborhood of a 10

point Heat victory are relatively likely, and so lowering the line below 10 to increase the bookmaker’s

probability of winning has a relatively large benefit.

Because the marginal effect of changing the line is larger under ii. than i., the bookmaker will

choose to bias its line downward when faced with this uncertainty. This slightly lowers the book-

maker’s probability of winning in i. but will raise its win probability of winning in ii. Because i. and

ii. are equally likely, at the time the bookmaker sets the line (before either i. or ii. is realized), it is

better off setting a line below the median of 10.

In this example, gamblers are thus more likely to bet on favorites, overs on over-under bets with

large totals, and unders on over-under bets with low totals. This happens because the injuries to Luke

Walton and Kobe Bryant are complements; the marginal effect of Bryant’s injury on top of Walton’s

injury is larger than Walton’s injury alone. Another possibility is that the injuries to Walton and Bryant

are substitutes. If, for example, Kobe Bryant needs Luke Walton to play in order to be successful,

then the marginal effect of the second injury is less than the first. The opposite argument applies and

the bookmaker biases its line upward. A third possibility is that the informational draws are neither
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substitutes nor compliments. In this case, lines are not biased. Section 4 provides numerical examples

of all three cases.

1.2 Related Literature

Despite the popularity of threshold betting on sports, almost no theoretical work examines how

bookmakers optimally set lines. One exception is Cain et. al. (2000), who focus on the risk attitudes

of gamblers, assuming away private information and the resulting strategic behavior which is the

focus of our paper. We are not aware of a paper that argues that bias can emerge even when both

bookmakers and gamblers rationally maximize the monetary payoff of bets.

Much empirical work on sports betting focuses on the efficiency of point spreads (cf. Gray and

Gray (1997) and Sauer, Brajer, and Ferris (1988)). Several papers study the favorite-longshot bias

in horse racing, i.e. the phenomenon of favorites generically performing better than longshots. Shin

(1991 and 1992) studies this bias in European horse betting markets while Hurley and McDonough

(1995) examine North American parimutuel betting, in which odds automatically adjust based on the

amount bet on each outcome. All three papers posit some gamblers as “informed” about the true

state of the world, while other “uninformed” gamblers simply guess as to what will happen. Unlike

in our model, this literature assumes that gamblers possess a direct informational advantage over

the bookmaker. As a result, a “favorite-longshot” bias emerges where it is optimal for uninformed

gamblers to bet on favorites and avoid longshots. Our results are noticeably different. We show that

depending on the exact distribution of the event’s outcome, it may be optimal for the bookmaker to

distort the line in favor of either the favorite or the longshot.

A small literature on forecasting considers models in which two or more agents try to outguess

each other. Ottaviani and Sorensen (2005, 2006) consider the case in which different forecasters

simultaneously state their predictions, and find that forecasters shade their predictions away from

their best guess under private information, as they have an incentive to differentiate themselves from

the crowd. Steele and Zidek (1980), Pittenger (1980), and Hwang and Zidek (1982), consider the

special case of two forecasters moving sequentially, finding that the second mover wins 3
4

of the time

under broad assumptions. However, their first movers act naively, simply forecasting their best guess

based on their private information, regardless of what that information is. Our paper adds a strategic

first mover, who generically biases its forecast (threshold) away from its best guess based on its private

information.
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2 Model

We now develop a model to demonstrate the paper’s main results. To most clearly present the

model’s mechanisms, we suppress features of actual gambling markets (e.g. risk averse bookmakers,

marginal costs, and exogenously biased gamblers) that do not affect our main conclusions.

Risk-neutral gamblers and bookmakers wager over the outcome of a random variable, denoted

γ. Bookmakers set a line, or threshold value of γ, denoted y. Gamblers then choose either “over”

or “under,” and the random variable’s value is realized. If γ > y, gamblers who chose over win

(1 − v) units from the house, while those who chose under lose 1 unit to the bookmaker, where v is

the vigorish charged by the bookmaker. If γ < y, then under wins and over loses.

Assume both bookmakers and gamblers have some information about the distribution of γ at the

time they make their decisions. If a bookmaker has information z1 and a gambler has information z2,

then the distribution of γ is G(γ|z1, z2).

Bookmakers can freely enter and exit the market. For simplicity, the gambler’s side of the market

is exogenously determined; there are a continuum of gamblers of measure 1, each betting one unit.

The game proceeds in three stages:

Stage 1: Bookmakers compete on vigorishes, and entry/exit decisions are made.

Stage 2: Information z1 is realized, and bookmakers set lines y(z1) for each bet.

Stage 3: Gamblers choose either over, under, or not to wager at all based on z2. γ is realized and

payoffs are realized.

If we consider only pecuniary payoffs, the interaction between a bookmaker and a gambler is a

zero-sum game. Because profit-motivated bookmakers won’t operate at a loss, the wide extent of

gambling makes it apparent that gamblers receive utility simply from playing the game. We therefore

assume that gamblers get a utility of ζ from each wager placed.10 Assume that each bookmaker pays

a fixed cost of c on each line it sets, while the marginal cost of taking a bet is 0.11

We make the following assumptions on the distributions of z1, z2, and γ:

(A) z1 and z2 are independently and uniformly distributed on the intervals [−α1, α1] and [−α2, α2],

respectively.

(B) For any (z1, z2), G is strictly increasing and continuously differentiable in γ on compact support

∆G ⊂ R, with density g.

(C) A higher zi means higher values of γ are more likely, i.e. ∂G
∂zi

< 0 for i = 1, 2.

Assumptions (A) and (B) are for simplicity; more general distributions for z1, z2, and γ can be

considered, but they complicate the analysis without adding much generality. Assumption (C) says
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that the distribution of γ for large z1 and z2 stochastically dominates the distribution of γ for low z1

and z2; this assumption is why bookmakers and gamblers view z1 and z2 as meaningful information.

We assume that all bookmakers are identical and thus receive the same information, and that all

gamblers likewise receive the same private information. Although actual gambling markets certainly

include additional heterogeneity, the model’s main mechanism can be communicated most clearly

using representative agents.12 Further, we assume for simplicity that bookmakers compete on vigs,

but not lines (i.e. a bookmaker can steal customers from his competitors by offering a lower vig but

not by setting an intentionally unfavorable line).13

In our application to sports betting, γ is the result of a sporting event, most likely a margin of

victory or sum of points scored. Using a football game as an example, γ may be the actual margin

of victory by the home team while y is the point spread set by the bookmaker. In the context of

a sporting event, z1 and z2 represent facts that are not universally known but allow agents to better

forecast the sporting event’s outcome. Examples may include information about injured players, how

the teams match up against each other, a team’s motivation, or differences in how the house and

gambler interpret the same piece of information.

2.1 Public information

We first consider the case of public information where z1 is known to both bookmakers and gam-

blers, while z2 is known only to gamblers. This informational assumption may apply if a delay exists

between bookmakers setting y and gamblers choosing over or under, so that z2 represents the addi-

tional public information that becomes known during the delay. Likewise, it may apply if bookmakers

must rely on public information while gamblers possesses additional private information, or if book-

makers must reveal z1 when setting y. In section 2.2, we show that the public information equilibrium

coincides with an equilibrium under private information where gamblers extract information about z1
from a bookmaker’s choice of y.

We characterize the subgame perfect equilibria of the three-stage game between bookmakers and

gamblers, beginning with stage 3.

Stage 3: Gamblers choose over or under

We solve the model backwards, beginning with a gambler’s problem for a fixed vig v, a line y,

publicly available information z1, and private information z2. A gambler’s probability of winning
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equals G(y|z1, z2) if she plays under and 1−G(y|z1, z2), if she plays over. Her utility is given by (1):

max


(1− v)G(y|z1, z2)− (1−G(y|z1, z2)) + ζ if she plays under

(1− v)(1−G(y|z1, z2))−G(y|z1, z2) + ζ if she plays over

0 if she does not play

(1)

Because a gambler can ensure herself at least a one-half probability of winning any bet by choos-

ing over if G(y|z1, z2) < 1
2

and under otherwise, a sufficient condition for a gambler to place a bet

is:

v < 2ζ (2)

For a sufficiently low v, the solution to (1) is described by a threshold value of z2, denoted

x∗(y, z1), above which she chooses over and below which she chooses under. She optimally chooses

x∗(y, z1) so that G(y|z1, x∗(y, z1)) = 1
2
.14 Assumptions (B) and (C) directly imply that ∂

∂y
x∗(y, z1) >

0, that ∂
∂z1
x∗(y, z1) < 0, and that x∗(y, z1) is continuous.

Stage 2: The bookmaker’s line-setting problem

We next consider the bookmaker’s problem of setting an optimal line for a fixed vig v. A book-

maker sets his line y(z1) aware of z1 but not z2. By assumption, a bookmaker ignores competitive

effects in setting lines; all books with the same z1 will set the same line.

A bookmaker chooses a line y to maximize its revenue from vigs and losing bets subject to x =

x∗(y, z1). A bookmaker gets revenue 1 from a bet a gambler loses, and revenue −(1 − v) from a bet

a gambler wins. Denote the probability a bookmaker wins a bet by

ψ(z1, y) =
1

2α2

(∫ α2

x

G(y|z1, z2)dz2 +

∫ x

−α2

1−G(y|z1, z2)dz2
)

(3)

The first term of ψ(z1, y) is the probability that under wins and the gambler chooses over. The

second term is the probability that over wins and the gambler chooses under. A bookmaker’s optimal

line y∗(z1) maximizes its profit:

y∗(z1) maximizes ψ(z1, y)− (1− ψ(z1, y))(1− v) (4)

Lemma 1 characterizes the bookmaker’s optimal strategy y∗(z1):

Lemma 1. 1. A solution to the bookmaker’s problem (4) exists and is continuous in z1.

2. The bookmaker’s public information equilibrium strategy y∗(z1) is described by (5):

1

2α2

(∫ α2

x∗(y∗(z1),z1)

g(y∗(z1)|z1, z2)dz2 −
∫ x∗(y∗(z1),z1)

−α2

g(y|z1, z2)dz2

)
= 0 (5)
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3. A sufficient condition for y∗(z1) to be a strictly increasing function is that ∂
∂z1
g(y|z1, z2) and

∂
∂y
g(y|z1, z2) be sufficiently small.

Proof: See appendix. �

y∗(z1) is the line which maximizes the bookmaker’s probability of winning a bet under public

information, and minimizes each gamblers’ win probability. The bookmaker loses money on the

average bet; it wins a bet with probability below 1
2
, as gamblers play over when they have a high z2

and under when they have a low z2, whereas a bookmaker sets the line knowing only the distribution

of z2. Therefore, the vig a bookmaker charges must be high enough to compensate it for his lower

probability of winning.

Sections 2.2 and 3 further characterize y∗(z1). Section 2.2 shows that when z1 is a bookmaker’s

private information, there is an equilibrium in which the book sets line y∗(z1), as if z1 is public

information, and gamblers correctly infer the bookmaker’s information from the line set. Section 3

shows that the lines bookmakers set under either informational regime are generally biased (different

from the median outcome conditional on z1), and gives conditions for when lines are biased upward

and downward.

Stage 1: Entry/exit and bookmakers’ vig-setting problem

In a market with free entry and exit, the equilibrium vig will be such that bookmakers make zero

expected profit.15 By assumption, all gamblers will patronize only the bookmaker with the lowest

vig, and if there are two or more such bookmakers, gamblers split evenly across all such books. Each

bookmaker’s profit from setting a line is equal to the measure of gamblers multiplied by the expected

revenue from each bet placed, minus the fixed cost c. Given that each bookmaker has a fixed cost of

operating, it is straightforward that the competitive outcome will leave a single firm, whose vig is just

large enough to break even. Proposition 2 describes the competitive equilibrium of the stage 1 game

and, by extension, the subgame perfect equilibrium of the overall public information game.

Proposition 2. In a competitive equilibrium, one bookmaker operates, sets a line y∗(z1) according to

(5), and charges a vig equal to:

v∗ =
c+ 1− 2Ez1ψ(z1, y

∗(z1))

1− Ez1ψ(z1, y∗(z1))
(6)

Proof: See appendix. �

Only one bookmaker operates in a competitive equilibrium because of our assumption of a con-

stant marginal cost of taking a bet. If bookmakers had increasing marginal costs, then the number
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of bookmakers operating in equilibrium would be increasing in the concavity of the bookmaker cost

function. Our approach is for simplicity. The bookmaker’s line setting problem does not depend on

this assumption.

2.2 Private information

We now consider private information, where z1 is a bookmaker’s private information and gam-

blers observe only y and z2. We might expect that this assumption would increase the bookmaker’s

chances of winning and thus reduce the equilibrium vig. Surprisingly, should the bookmaker’s public

information strategy y∗(z1) be strictly increasing, there is a private information equilibrium in which

a bookmaker behaves as though its information is public, and gamblers correctly infer a bookmaker’s

private information from the line. A bookmaker is thus no better off by having private information.

If a gambler believes that a bookmaker is playing its public information strategy, it would seem that

a bookmaker has an incentive to manipulate its line in order to convey false information to gamblers.

For example, by setting a line y > y∗(z1), a bookmaker may convince gamblers that its private

information suggests a higher outcome of γ than it actually does, and thus may lead gamblers to

interpret their own information differently. The reason bookmakers do not do this is that a gambler’s

public information strategy is chosen to minimize the probability of a bookmaker winning the bet.

The marginal effect of a small change in a gambler’s strategy on a bookmaker’s win probability is

therefore zero. A bookmaker thus sets the line thinking only of the direct effect of a marginal change

in the line on its probability of winning, and ignores the indirect effect of a line change on a gambler’s

strategy, as in equation (5). At the margin, the bookmaker’s problem is therefore identical to the

public information case, where a change in the line set has zero impact on a gambler’s strategy.16

We begin our formal analysis in stage 3. For any y ∈ ∆G, a gambler has beliefs πy(z1), assign-

ing a probability to each z1 ∈ [−α1, α1] such that 1
2α1

∫ α1

−α1
πy(z1)dz1 = 1. A gambler’s strategy

under private information is a function x̃ : ∆G → [−α2, α2] mapping the threshold y into a choice

of x̃ such that she plays “over” if and only if z2 ≥ x̃(y). A gambler optimally sets x̃∗ such that

EπG(y|z1, x̃∗(y)) = 1
2
.17

Suppose gamblers hold the beliefs in (7):

z∗1(y) =


z−11 (y∗) w.p.1, if y ∈ [y∗(−α1), y

∗(α1)]

−α1 w.p.1, if y < y∗(−α1)

α1 w.p.1, if y > y∗(α1)

(7)

z∗1(y) is the inverse of a bookmaker’s strategy y∗(z1) from the public information case, with out-

of-equilibrium beliefs defined so that a bookmaker has no incentive to set a very low or very high

line.
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If a gambler’s beliefs are given by (7), then x̃∗(y) = x∗(y, z∗1(y)), that is she plays the same

threshold as in the public information case. Now consider stage 2. A bookmaker can do no better

than playing its public information strategy y∗(z1), thus negating the value of any private information

that it has. Proposition 3 demonstrates that these strategies and beliefs comprise an equilibrium in

stage 2, so long as y∗(z1) is a strictly increasing function.

Proposition 3. Under private information, so long as y∗(z1) is a strictly increasing function, there is

a perfect Bayesian equilibrium in which

1. Gamblers play strategy x̃∗(y) = x∗(y, z∗1(y)) where x∗(y, z1) is the optimal public information

strategy

2. Gamblers hold beliefs z∗1(y) as described in (7)

3. Bookmakers play y∗(z1), i.e. their optimal public information strategy from (5)

Proof: See appendix. �

A bookmaker therefore plays its public information strategy, even though doing so allows gam-

blers to indirectly observe z1 without error. Given that behavior in stages 2 and 3 is identical to

the public information case, the equilibrium vig set by bookmakers in stage 1 will match the public

information v∗ from proposition 2 .

We now more fully characterize the bookmaker’s equilibrium strategy y∗(z1), and examine the

determinants of the direction of bias in the line.

3 Biased lines

Returning to the example of section 1.1, suppose bookmakers and gamblers are wagering over

Miami’s margin of victory over Los Angeles. Interpret the Luke Walton injury — the first piece of

information revealed — as a high z1. Certainty that Kobe Bryant will not play is a high z2, while

certainty that Bryant will play is a low z2. Given the result of proposition 3, it does not matter if

information about Luke Walton’s injury is known only to bookmakers or is publicly known.

Let m(z1) be the median of γ conditional only on z1, that is:

1

2α2

∫ α2

−α2

G(m(z1)|z1, z2)dz2 =
1

2
(8)

In this section, we characterize y∗(z1) in relation to m(z1). If a bookmaker sets y∗(z1) > m(z1)

when z1 is large (upward bias), it will also set y∗(z1) < m(z1) for low z1 (downward bias), as the

11



cases of high and low z1 are mirror images of one another. For simplicity, we focus only on high

values of z1. Define m∗ to be the median of γ before z1 and z2 are realized, that is:

1

4α1α2

∫ α1

−α1

∫ α2

−α2

G(m∗|z1, z2)dz1dz2 =
1

2
(9)

That G is continuously decreasing in z1 implies that there exists an uninformative draw of z1 such

that the bookmaker’s conditional median equals m∗. We define this draw as z∗1 :

1

2α2

∫ α2

−α2

G(m∗|z∗1 , z2)dz2 =
1

2

Consider a z1 > z∗1 . There are three possibilities for the optimal line, y∗(z1):

1. y∗(z1) > m(z1) (Bookmaker biases line upward)

2. y∗(z1) < m(z1) (Bookmaker biases line downward)

3. y∗(z1) = m(z1) (Bookmaker does not bias line)

The direction of bias in the bookmaker’s line depends on the complementarity or substitutability

of the two pieces of information. Specifically, if a high z2 does not increase the median outcome

much (z1 and z2 are substitutes), then the density of γ will be high in the neighborhood of m(z1). As

a gambler with a high z2 will choose over, a bookmaker has a strong incentive to set y(z1) > m(z1)

to increase its chances of winning with under in the event that z2 is large. If a small z2 decreases the

median outcome far below m(z1), then the density of γ around m(z1) will be low, and the benefit

to the bookmaker of setting y(z1) < m(z1) will be small (but positive, as gamblers with low z1 will

play under). The bookmaker, being relatively more concerned with a high z2 than a low z2, sets

y(z1) > m(z1). The opposite story holds if z1 and z2 are complements.

Proposition 4 formalizes the above intuition, giving sufficient conditions for upward and down-

ward bias. For any given distribution, and for z1 > z∗1 , evaluate the bookmaker’s first-order condition

(5) at m(z1). If the result is positive, a bookmaker biases the line upward; if the first-order condition

at m(z1) is negative, a bookmaker sets the line with a downward bias. If the first-order condition

is zero, he does not bias the line. Proposition 4 gives tractable sufficient conditions for upward and

downward bias.18

Proposition 4. A. (upward bias) If g(m(z1)|z1, ε) ≥ g(m(z1)|z1,−ε) for all z1 > z∗1 and for all ε > 0,

and if G(m(z1)|z1, z2) is concave in z2, a bookmaker will bias the line upward so that y(z1) > m(z1)

for all z1 > z∗1 .
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B. (downward bias) If g(m(z1)|z1, ε) ≤ g(m(z1)|z1,−ε) for all z1 > z∗1 and for all ε > 0, and if

G(m(z1)|z1, z2) is convex in z2, a bookmaker will bias the line downward so that y(z1) < m(z1) for

all z1 > z∗1 .

C. (no bias) If g(m(z1)|z1, ε) = g(m(z1)|z1,−ε) for all ε > 0, and if G(m(z1)|z1, 0) = 1
2

for all

z1, then a bookmaker will set an unbiased line.

Proof: See appendix. �

It follows immediately that if a bookmaker biases his line upward, then the magnitude of bias in

the line is increasing in z1. Thus, a bookmaker actually sets y so that he exaggerates his information

more the stronger it is. Of course, the conditions of proposition 4 are not exhaustive. It is also entirely

possible there exists some distribution such that a bookmaker biases the line upward for some z1 > z∗1

and downward for other z1 > z∗1 .

Biased lines have empirical support. y∗(z1) = m(z1) represents the conventional wisdom that

books set lines which result in equal wagering on each type of bet. The outcomes in A. and B.,

however, follow the empirical results of Levitt (2004), and Paul and Weinbach (2007, 2009, and

2011), which suggest that lines are often biased. Consider the outcome in B. Here, the bookmaker

dampens its information and sets lines between the unconditional median and the median conditional

on z1. As a result, gamblers upon observing z2 are more likely to play over when the line is above

the unconditional median, and under when it is below the unconditional median. If the line represents

a point spread, then bettors are biased toward favorites. If the line is an over-under, then gamblers

will be biased toward over the total when the game is expected to be high scoring, and under the

total when it is expected to be low scoring. Importantly, these biases do not result from irrationality

or bettors maximizing something besides their probability of winning. They are a result of both

sides maximizing their chances of winning the game. We can therefore interpret the results of Levitt

(2004), and Paul and Weinbach (2007, 2009, and 2011) on point spread football as being consistent

with substitutability of information in the context of football. It would be interesting for future work

to study complementarity versus substitutability in other sports.

Section 4 gives examples for all three types of bias. Of course, for z1 < z∗1 , the inequalities in 1-3

reverse. Note that y∗(z∗1) = m∗ = m(z∗1) regardless of whether a bookmaker otherwise biases the line

up or down.

4 Numerical examples

We now discuss three examples that illustrate the three types of bias discussed in proposition 4, as

well as an example which allows one agent to have ex-ante better information than the other.
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4.1 A numerical example of upward bias

Suppose that z1 and z2 are uniformly distributed on [−1, 1]. Suppose further that G(γ|z1, z2) =

γ(1 − 1
2
(z1 + z2)) + (z1 + z2)

γ2

2
, with ∆G = [0, 1]. The density of γ is then linear in z1 + z2, with

slope z1 + z2. It is direct that z1, z2, and G satisfy assumptions (A)-(C), and:

x∗(y, z1) =


1, if 1−2y

y2−y − z1 > 1

−1, if 1−2y
y2−y − z1 < −1

1−2y
y2−y − z1, otherwise

(10)

Note that z∗1 = 0. Evaluating the first-order condition (5) at y(z1) = m(z1) yields

∂ψ(y, z1)

∂y

∣∣∣∣
y=m(z1)

= m(z1)−
1

2
(11)

as x∗(m(z1), z1) = 0. Because m(0) = 0 and m is increasing in its argument, (11) is positive for

z1 > 0 and negative for z1 < 0, and a bookmaker biases the line upward for positive z1 and downward

for negative z1. It is also direct to verify that the assumed G meets the conditions for proposition 4A.

Figure 1 plots the difference between a bookmaker’s equilibrium strategy and the conditional me-

dian, m(z1) (i.e. the degree of bias in the line set by a bookmaker).19 Figure 2 displays a bookmaker’s

probability of winning for each z1 ∈ [−1, 1]. Integrating over all z1, a bookmaker’s ex ante proba-

bility of winning in this example is 43.9%. For this probability, as c → 0, the equilibrium vigorish

in a competitive market approaches 22%. With our model, it is thus possible to generate equilibrium

vigorishes greater than the 10% observed in gambling markets.20

Given that, in equilibrium, gamblers have better information than bookmakers, it is unsurprising

that bookmakers win with probability less than .5. To eliminate this informational advantage, figures

(1) and (2) also consider the special case of naive expectations. Under naive expectations, we assume

that a gambler ignores a bookmaker’s information by acting as if z1 = z∗1 = 1
2
. As shown in figure 2,

under naive expectations, a bookmaker’s ex ante probability of winning is 45.9%, resulting in a first

mover disadvantage equal to 4.1%. Public or private information (where a bookmaker’s overall win

probability is 43.9%) imposes the maximum possible informational disadvantage on a bookmaker.

These results roughly quantify this informational disadvantage at 2.0%, surprisingly less than half of

a bookmaker’s first mover disadvantage.

Why does a bookmaker bias the line in this way? Consider figure 3. Suppose its information

suggests that γ is likely to be high (say, z1 = 1). The expected median outcome conditional on

this information is then above the ex ante median of 1
2
; it equals 0.62. The density of γ is becoming

increasingly steep in z2, being completely flat for z2 = −1 (together, z1 and z2 provide no information)

and steepest for z2 = 1 (very likely that γ will be high). A bookmaker thus gains by biasing the line

14



Figure 1: Bookmaker’s equilibrium bias
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upward from m(z1) = .62, as the rate at which its probability of winning with over decreases (the

slope of the density for low z2) is less than the rate at which his probability of winning with under

increases (the slope of the density for high z2). A bookmaker can increase its win probability on

the margin by biasing the line upwards from m(z1), until the two marginal effects discussed above

are equalized. Of course, if z1 is negative, then it will hedge against negative draws of z2 by setting

y < m(z1).

4.2 A numerical example of downward bias

Now suppose that the density of γ is equal to 2 at 1
2

+ 1
4
(z1 +z2), equal to 0 for all γ /∈ [−1, 1], and

linear otherwise. Here, the density of γ is triangle-shaped: unimodal, with a peak at 1
2

+ 1
4
(z1 + z2),

and linear otherwise. Formally,

g(γ) =


8γ

2+z1+z2
if γ ∈ [0, 1

2
+ 1

4
(z1 + z2)]

8(1−γ)
2−(z1+z2) if γ ∈ [1

2
+ 1

4
(z1 + z2), 1]

0 else

(12)

As in section 4.1, continue to assume that z1 and z2 are uniform on [−1, 1]. It is straightforward
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Figure 2: Bookmaker’s probability of winning
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that m(z1) = 1
2
− 1

2
z1 − 1

24
(6− 2z1)

3
2 + 1

3

(
3
2

+ 1
2
z1
) 3

2 and that

x(y, z1) =



−1 if y < 1−
√
6+2z1
4

16y − 8y2 − 6− z1 if y ∈
[
1−

√
6+2z1
4

, 1
2

]
8y2 − 2− z1 if y ∈

[
1
2
,
√

3+z1
8

]
1 if y >

√
3+z1
8

(13)

We numerically compare the maximizer of (5) with m(z1) in figure 4. A bookmaker sets a down-

ward biased line for any z1 > 0, with more bias the higher z1 is. Figure 5 explains why. If a

bookmaker’s information is that γ is likely to be high (say, z1 = 1), values of γ around the condi-

tional median m(z1) = .599 are more likely with a low draw of z2 than with a high draw. Therefore,

what a bookmaker gains from lowering the threshold y below m(z1)— an increased probability of

winning should z1 be low— outweighs what it loses— a decreased probability in the event of a high

z2. Because a low z2 and a high z2 are equally likely, a bookmaker optimally sets y < m(z1). The

equilibrium vig charged by the house in this example goes to 30.6% as fixed cost c approaches 0.

4.3 A numerical example of no bias

In the previous two sections, a bookmaker has an incentive to bias the line away from or toward the

unconditional median because more of the density of γ is concentrated around m(z1) for high or low
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Figure 3: Density of γ under different realizations of z2 when z1 = 1
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z2, respectively. If, however, a high z2 and a low z2 affect the distribution of γ symmetrically, then a

bookmaker may set an unbiased line. Suppose that γ is distributed normally with meanA+B(z1+z2)

and variance σ2, where A, B, and σ are exogenous parameters. Consider figure 6. Here, for a given

z1, a high z2 moves the density of γ to the right by exactly as much as a draw of −z2 would move it

to the left. As a result, g(m(z1)|z1, z2) = g(m(z1)|z1,−z2) for any z1 and z2. Suppose z1 = 1. Were

a bookmaker to bias the line toward the median, the increased probability it would win given a low

z2 is exactly equal to the decreased probability of winning from a high z2. There is thus no reason to

bias the line downward or upward.

4.4 A numerical example where one agent has better information

The previous three examples assume that the bookmaker and gambler have ex ante identical infor-

mation. It can reasonably be argued, however, that either the bookmaker’s or gamblers’ information

is likely to be ex ante superior to the other’s. We therefore examine the effects of z1 and z2 having

different supports in the context of our illustrative example of section 4.1, the case of upward bias.

We assume that z1 is distributed uniformily on [−(2− κ), 2− κ], while z2 is uniformly distributed on

[−κ, κ]. All other assumptions are as in section 4.1.

Increasing κ increases the strength of the gambler’s information relative to the house, and increases
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Figure 4: Bookmaker biases the line downward from the conditional median.
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the line’s bias.21 By the explanation in section 3, for example, a bookmaker sets an upward biased

line because it is relatively more concerned with high values of z2 than with low values. Increasing κ

increases the relative importance of z2 relative to z1, and so it is unsurprising that this amplifies the

effect.

Figure 7 plots the bookmaker’s probability of winning, averaged across draws of z1, under both

public information and naive expectations. Unsurprisingly, these odds decrease as κ and the informa-

tive power of z2 increase. Under public information, a bookmaker’s odds of winning are maximized

at 1
2

when κ = 0 and z2 is completely uninformative. The competitive vig (for c close to zero) ranges

from 0 when κ = 0 to 40% when κ = 2. It equals 10% when κ = 0.44, a value where the bookmaker

enjoys a significant ex ante informational advantage over gamblers.

Figure 8 plots the average absolute value of bias in the line. Under public information, low values

of κ eliminate the bookmaker’s incentive to hedge against high draws of z2 and little bias occurs. As

κ increases, the degree of bias increases for any given z1. At the same time, higher magnitudes of

z1, which exhibit the most bias, are eliminated from the support of z1. Initially, the former effect

dominates the latter and average bias increases with κ. Above κ = 1.45, however, the latter effect

dominates and average bias begins to converge toward zero as κ approaches two.
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Figure 5: Bookmaker biases the line towards the median with z1 = .9
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5 Line movements

Bookmakers may revise their initial lines in response to new information or the betting patterns of

the public. There is some dispute regarding the significance of actual line revisions. Levitt (2004), for

example, argues that changes are small, infrequent, and not significant in his dataset of NFL lines.22

Kuypers (2000) finds a similar result for UK soccer betting. Gandar, et al. (1998 and 2000), however,

present evidence that line changes effectively eliminate the bias that often exists in opening lines in

their dataset of NBA games.

So far, we have assumed that the bookmaker’s initial line remains unchanged throughout the game.

Our model is therefore best suited for explaining the behavior of the initial pool of bettors. In this

section, we introduce another stage to the game where the house may revise its line after z2 is revealed.

Unsurprisingly, additional information induces movements in the line.

When both sides know z1 and z2, there is little room for strategic behavior. The bookmaker sets

its revised line at the median, conditional on both z1 and z2, and agents are indifferent between over

and under. Each side wins the game with probability one-half. Proposition (5) formalizes this result:

Proposition 5. In the additional stage of the game, upon observing z1 and z2, the bookmaker revises

its line to the median, conditional on both z1 and z2, and both players win with probability one half.

Proof: See appendix. �
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Figure 6: Bookmaker sets an unbiased line with z1 = 1
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The line therefore moves in the direction of bettors’ private information. Like the major result

of Gandar, et. al (1998), the movement of the line eliminates the bias present in the opening line.

The bookmaker’s odds of winning improve, and now equals a weighted (by the relative fractions of

early and late bettors) average of the results from section 2 and one-half. It is straightforward that if

the bookmaker is able to mitigate its first-mover disadvantage by adjusting its line in reponse to new

information, the equilibrium vig will be lower.

A different behavioral assumption, however, allows the final line to continue to exhibit bias. Sup-

pose that gamblers form naive expectations where they ignore the house’s private information by

acting as if z1 = 0. In this case, gamblers play over if and only if G(y|0, z2) ≤ 1
2
. If z1 > 0, then the

bookmaker optimally chooses y such that G(y|0, z2) is arbitrarily greater than one-half. In this case,

gamblers play under, but are likely to lose. If z1 < 0, however, then the bookmaker sets y such that

G(y|0, z2) is arbitrarily less than one-half. Gamblers then play over and are likely to lose.23 In setting

the final line, the bookmaker therefore largely ignores its own information and instead moves the line

closer to the line suggested by viewing the gamblers’ private information in isolation.
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Figure 7: Bookmaker’s probability of winning
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6 Conclusion

While common sense suggests that bookmakers should set lines in order to equate betting on each

side of an event in order to profit from commissions risk-free, we argue that bookmakers can do better

than this if they have information that interacts with private information which is unknown at the

time the line is set. Depending on whether or not a bookmaker’s information is a complement or

a substitute of information learned by gamblers, a bookmaker can set a biased line either above or

below the median outcome, and gamblers will prefer certain types of bets. This theoretical result can

help to explain empirical results that overwhelmingly suggest that bookmakers do not set lines so as

to equate money placed on both sides of a bet.

Our model abstracts from two notable aspects of point spread gambling. First, we assume that

the outcome’s distribution is continuous. Most sports outcomes, however, are discrete, and certain

margins of victory may be especially likely. If the median outcome occurs with significant probability,

then the bookmaker’s disadvantage is likely to be compounded.24 Second, we assume that if there are

multiple bookmakers, then they all share the same information at the time they set their line. It might

be interesting for future studies to examine the strategic interaction between early line-setters and late

line-setters.

This model may be relevant for settings other than sports gambling. Suppose the owner and a

prospective buyer of a plot of land both commission engineer’s reports on how much oil the plot
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Figure 8: Average magnitude of bias
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contains; both then have private information. Suppose that one party makes a take-it-or-leave-it offer

to the other. Should the offering party set a price equal to the expected value of the land based on his

private information, or should he shade his offer away from this expected value, and, if so, in which

direction? Future work will consider this question.

7 Appendix

Proof of lemma 1:

1. Follows from the continuity of G, x∗(y, z1), and ψ, and the fact that ∆G is a compact set.

2. The derivative of (3) is given by:

∂ψ(y, z1)

∂y
=
∂x∗(y, z1)

∂y
(1− 2G(y|z1, x∗(y, z1)))f(x∗(y, z1))

+
1

2α2

(∫ α2

x∗(y,z1)

g(y|z1, z2)dz2 −
∫ x∗(y,z1)

−α2

g(y|z1, z2)dz2

)
= 0

but the first term is 0, asG(y|z1, x∗(y, z1)) = 1
2

for any y. This reflects the fact that as a gambler

chooses x∗ to minimize ψ, the marginal effect on ψ of changing x∗ is 0.
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3. These conditions follow from examination of (5). Applying the Leibnitz integral rule, the left

hand side of (5) is increasing in z1 if ∂
∂z1
g(y|z1, z2) is sufficiently small and is decreasing in y if

∂
∂y
g(y|z1, z2) is sufficiently small. These facts together imply that y(z1) is increasing in z1.

�

Proof of proposition 2: Suppose there is an equilibrium with n ≥ 2 firms operating. Let v(n) describe

the zero-profit vig if customers are split across the n firms. Book i’s expected profit is

v(n)(1− Ez1ψ(z1, y
∗(z1))) + 2Ez1ψ(z1, y

∗(z1))− 1

n
− c = 0 (14)

Consider a deviation to vig v′ = v(n) − ε. Then, book 1 would capture the entire market, and

despite earning a slightly lower vig per customer, would earn a higher total profit:

v′(1− Ez1ψ(z1, y
∗(z1))) + 2Ez1ψ(z1, y

∗(z1))− 1− c > 0 (15)

The expression for v∗ in the proposition follows from setting n = 1 in (14) and solving for v. �

Proof of proposition 3:

Under private information, the first-order condition for a maximizer to a bookmaker’s win proba-

bility located in [y∗(−α1), y
∗(α1)] is given by:

∂ψ̃(y, z1)

∂y
=
∂x̃∗(y)

∂y
(1− 2G(y|z1, x̃∗(y)))f(x̃∗(y))

+
1

2α2

(∫ α2

x̃∗(y)

g(y|z1, z2)dz2 −
∫ x̃∗(y)

−α2

g(y|z1, z2)dz2

)
= 0 (16)

For any z1, G(ỹ∗(z1)|z1, x̃∗(y)) = 1
2

and so the first term is 0 at y∗(z1) and x̃∗(y). Then, by virtue

of (5) equaling 0 at y∗(z1), the right-hand side of (16) is 0 when evaluated at y∗(z1), as x̃(y∗(z1)) =

x∗(y∗(z1), z1). Under y∗(z1), a gambler’s beliefs are correct and x̃∗(y) is optimal for a gambler,

as she is correctly inverting the bookmaker’s public information strategy y∗(z1). Finally, given the

gambler’s stated beliefs for out of equilibrium lines, any line y < y∗(−α1) is dominated by y∗(α1),

and y > y∗(α1) is dominated by y∗(α1). �

Proof of proposition 4: Consider the first-order condition characterizing the bookmaker’s optimal

strategy y∗(z1), equation (5). For z1 > z∗1 , evaluate the left-hand side at y = m(z1).

First, if G(m(z1)|z1, z2) is concave in z2, x∗(m(z1), z1) ≤ 0, while if G(m(z1)|z1, z2) is convex in

z2, x∗(m(z1), z1) ≥ 0. To see why, recall that m(z1) is defined by 1
2α2

∫ α2

−α2
G(m(z1)|z1, z2)dz2 = 1

2
.

That is, G(m(z1)|z1, z2) is above 1
2

for low z2 and below 1
2

for high z2, with an average value of 1
2

(recall by assumption C that G is decreasing in z2).
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If G(m(z1)|z1, z2) is convex in z2, x(m(z1), z1) ≤ 0.25 Therefore, for any z1 > z∗1 , if the condi-

tions of part A of the proposition are satisfied, the left-hand side of (5) is positive when evaluated at

y = m(z1), and so is only satisfied for y > m(z1). Similarly, if the conditions of part B are satisfied,

the left-hand side of (5) is negative at y = m(z1), and so only satisfied for y < m(z1). Finally,

if the conditions of part C are satisfied, the first-order condition (5) is satisfied for y = m(z1) and

y∗(z1) = m(z1). �

Proof of proposition 5: A gambler chooses over if and only if G(y|z1, z2) ≤ 1
2

and chooses under if

and only ifG(y|z1, z2) > 1
2
. Her probability of winning is thereforemax[G(y|z1, z2), 1−G(y|z1, z2)].

A bookmaker clearly minimizes this probability by setting y such that G(y|z1, z2) = 1
2
. A gambler

thus plays over and wins with probability one-half. �

Notes
1See the National Gambling Impact Study (1999).
2Typically, bettors wager $11 to win $10 at a traditional bookmaker. Underground bookies often charge the commis-

sion on losses instead of wins. In both cases, the average commission is about 4.54% if bettors bet on both sides equally.

For a detailed discussion of the rules bookies and gamblers follow, see The book on bookies: An inside look at a successful

sports gambling operation by Jeffries and Oliver.
3Throughout the paper, we use bias to refer to instances where gamblers are more likely to make one type of bet (e.g.

favorites as opposed to underdogs, or over as opposed to under) than another. We refer to a line as biased if it induces such

behavior on average. Betting behavior exhibits exogenous bias if bettors simply get more utility from betting on a certain

team or outcome regardless of monetary outcome. Endogenous bias refers to bettors maximizing their monetary outcome

by making some types of bets more often than others. This paper is concerned only with the latter.
4The legality of online sports betting in the United States through offshore websites remains unclear. In 2006, Congress

passed the Unlawful Internet Gambling Enforcement Act which makes it difficult for potential gamblers to conduct finan-

cial transactions with online books. Gamblers therefore face added transaction costs and potential expropriation risk,

relative to legal books, when gambling online. Online books hosted in the United States are unambiguously illegal.
5A Google Maps search shows nearly 100 bookmakers in London and its suburbs alone; while some books such as

William Hill have multiple storefronts, there are at least a dozen distinct bookmakers operating in London.
6Certainly, part of the vigorish is needed to compensate the bookmaker for its conventional costs, including both

operating costs such as overhead and labor, and the risk that is assumed by the bookmaker if they are credit constrained

or if the game is not played often enough for them to aggregate their risk away. Anecdotal reports of how books operate,

such as the Jeffries and Oliver text referenced in note 2, offer compelling evidence that a bookie’s cost of setting up an

office and taking bets are quite small relative to other similar-sized businesses.
7Allowing bookmakers to simultaneously compete over the vigorish and line does not affect our major results, subject

to a minor regularity condition.
8Section 5 extends the game so that bookmakers may adjust their lines after observing gamblers’ private information.
9Here the conditional median implies integrating over all possible realizations of the gamblers’ private information.
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10Multiple surveys (e.g. Neighbors et al. (2002), and Gupta et al. (1998)) find that gamblers wager for ’“fun,” “social

reasons,” “excitement”, and “enjoyment.” Other papers making a similar assumption include Levitt (2004), and Farrell et

al. (1999). Peel and Law (2009) provide a more detailed discussion of this modeling approach. We assume the utilities

from winning and losing bets are the same for simplicity.
11If the fixed cost c is too large compared to ζ, then there may be no bookmakers in equilibrium. This is consistent with

the observation that there is no wagering on many obscure sporting events.
12An obvious generalization would be that individual gamblers receive a noisy signal around a “true” z2. The effect of

this would be that the majority of gamblers, instead of all of them, make a certain wager for a given z2. If each bookmaker

receives a noisy signal of the true z1, then only the bookmakers with the highest and lowest signals receive any business

in equilibrium, and the equilibrium vigorish is higher. In both cases, the model’s major conclusions are unaffected.
13Some bookies offer clients the chance to “purchase” a half-point movement in the line by agreeing to a double vig.

One bookie described this as a sucker bet, and the uniformity of vigs described in the introduction suggests there is little

demand for a high-vig, bad-line sports book (see the Jeffries and Oliver book referenced in note 2). We also solved

the model for the case where bookmakers simultaneously compete on the vig and the line. Subject to a mild regularity

condition, the only notable change to our results is that the equilibrium vig may depend on z1 in this case.
14If no such x exists, x∗(y, z1) = −α2 (gambler always plays over) if G(y|z1, z2) < 1

2 for all z2 ∈ [−α2, α2] and

x∗(y, z1) = α2 (always plays under) if G(y|z1, z2) > 1
2 for all z2 ∈ [−α2, α2].

15Note that different values of z1 may generate different profits for a bookmaker.
16There is anecdotal evidence that gamblers attempt to extract the bookmaker’s private information based on the line. In

September 2000, the unranked Oregon Ducks were strangely about a 3.5 point favorite over the sixth ranked UCLA Bruins

in a college football game. Popular prognosticator Lee Corso, however, picked Oregon to win the game, because the line

suggested that “somebody knows something,” about Oregon being likely to win (ESPN College Gameday, September 23,

2000). Oregon won the game 29-10 and finished the season ranked seventh with a 10-2 record. UCLA finished the year

6-6 and unranked.
17If no such x̃ exists, x̃∗(y) = −α2 if EπG(y|z1, z2) < 1

2 for all z2 and x̃∗(y) = α2 if EπG(y|z1, z2) > 1
2 for all z2.

18Proposition 4 gives conditions for upward or downward bias for z1 > z∗1 . The conditions for z1 < z∗1 are analogous.
19As the public and private information equilibria coincide, both are represented in figure 1.
20If instead G(γ|z1, z2) = γ(1 − 1

2τ(z1 + z2)) + τ(z1 + z2)
γ2

2 , where τ ∈ (0, 1) is a scaling parameter, then the

equilibrium vigorish will be reduced for low τ . As τ → 0, z1 and z2 are less informative, ψ(z1, y∗(z1)) → 1
2 , and

v∗ → 0. Thus, for an appropriately chosen τ , the equilibrium vigorish will equal 10%.
21This claim follows from direct calculation of the first-order condition (5).
22One explanation for the lack of line movements is a bookmaker’s fear of being “middled,” where it loses the bulk

of bets placed on both teams. For example, 1979, the Pittsburgh Steelers opened as 3.5 point favorites over the Dallas

Cowboys in Super Bowl XIII. The majority of gamblers bet on Pittsburgh at this opening line, and the final line drifted

up to 4.5 points, where the majority of bettors chose Dallas. Trailing 35-24 with 22 seconds remaining, Dallas scored a

touchdown to make the final score 35-31 in favor of Pittsburgh, heroically beating the final point spread. Bookmakers,

however, lost or tied (thus forgoing the vigorish) the majority of bets placed on both teams. The event is known as “Black

Sunday” among bookies.
23This result is sensitive to our assumption that all bettors have the same information. If each gambler receives a noisy

signal of z2, then this strategy will ensure that approximately half of the gamblers play over. The optimal strategy in this

case is to set y closer to the median, conditional on both z1 and z2.
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24In college football, for example, about 16% of games are decided by either 3 or 7 points.
25Suppose thatG(m(z1)|z1, z2) were convex in z2 and x(m(z1), z1) > 0. Then, by convexity ofG, 1

2−
∫ α2

x(m(z1,z1)
G(m(z1)|z1, z2)dz2 ≤∫ x(m(z1,z1)

2x(m(z1,z1)−α2
G(m(z1)|z1, z2)dz2− 1

2 . But the fact that x(m(z1), z1) > 0 then contradicts equation (8). A similar proof

shows that if G(m(z1)|z1, z2) is concave in z2, then x(m(z1), z2) ≥ 0.
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