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In markets for credence goods, such as doctor visits, customers sample a firm for
a few periods, before deciding whether to retain or fire that firm. In our model,
customers have endogenously determined patience in tolerating bad outcomes from
credence-good providers. The more competitive the market, the more options
customers have away from a firm, and so the less tolerant of bad outcomes she will
be. Competition thus increases equilibrium firm effort, as providers work harder
to impress impatient customers. Higher effort raises customer surplus and helps
balance the informational advantages providers enjoy in credence-good markets.
(JEL: C73, D82, L14, L15)

1 Introduction

A recent undercover government investigation into EZ Lube, a chain of about 75 south-
ern California auto repair shops, found 640 instances of fraud, including customers being
charged for services that were never performed and being advised to order unnecessary
repairs.1 A 2006 investigation of Los Angeles-area Jiffy Lube stores by the television
station KNBC showed workers charging for transmission flushes and other services that
were not done, evidently at the behest of the area district manager.2 The Economist
speculates that as much as one-third of medical spending in the U.S. is on “irrele-
vant tests, unproven procedures, and unnecessarily pricey drugs and devices” (see The
Economist, February 2, 1999, p. 89). A Federal Trade Commission (1980) study of the
optometry industry found evidence suggestive of optometrists systematically prescribing
unnecessary treatment (via Wolinsky, 1993).

This paper is concerned with credence good markets, in which an expert firm supplies
goods or services to a customer who can only partially evaluate quality, even ex post.
For example, a tourist charged $50 for a cab ride from the airport to a hotel can at
best speculate whether she was overcharged. New parents are often poorly equipped to
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1See California’s Department of Consumer Affairs press release from September 20, 2006.
2See www.nbclosangeles.com/Is Your Mechanic Cheating.html.
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judge the medical necessity of a C-section.3 A pet owner will never know if expensive
veterinary treatment was the most appropriate response to an illness, or if rest and time
would have produced the same results.

With payment divorced from unobserved quality, what incentive do credence-good
providers have to honestly diagnose the severity of a problem and to do their best to
correct it? This paper adds to the existing literature on credence goods by demonstrating
that customers will be less patient in absorbing bad outcomes the more firms there are
in the market. In the context of the previous examples, a bad outcome may be either a
dog that remains ill for several days after a vet visit, or a dog that is healthy and lively
after a $500 vet visit, while a good outcome is a healthy dog and a low bill. Similarly,
a bad outcome may be a C-section birth, while a good outcome may be a nonsurgical
birth. In both examples, the bad outcomes are not, by themselves, indicative of poor or
unscrupulous service; more expensive treatment is often medically preferable for good
reason. But, all else equal, the bad outcomes are worse than the good outcome in which
minimal medical action is necessary for good health. Pet owners and patients often
have very limited information about the medical necessity of tests; thus, tolerance, or
patience, for bad outcomes depends greatly on the trust they have in the provider.

The contribution of this paper is to endogenize customer patience for bad outcomes.
In particular, as product market competition increases, customers tolerate fewer bad
outcomes before switching to a new firm, as the opportunity cost of switching – the
possibility that a customer is giving up on a highly qualified expert who was unlucky
enough to produce several bad outcomes – decreases as the number of firms in the market
increases. This incentivizes better service for two reasons: one, firms have fewer chances
to convince customers to continue with them when the market is more competitive, and
two, if customers do decide to try other credence-good providers in town, then not only
is it less likely that they will ever return, but it will be farther in the future if they do.
Therefore, mechanics who repeatedly overcharge customers (for example) will eventually
lose business to their competitors. Doctors who routinely provide C-sections regardless
of medical necessity will develop a reputation for doing so and find it hard to attract
patients.

The results of our paper apply to any credence-good market in which reputation is
important, either because of repeat visits (e.g., mechanics, accountants, general practi-
tioners) or because of word-of-mouth reputation (e.g., “everyone I know who has used
that ob-gyn ended up getting a C-section”). The mechanism we describe has no bite in
markets where providers have little or no reputational concerns, like the market for taxi
rides or for restaurants located at highway rest stops.

Interestingly, the competitive effect described here depends on quality being imper-
fectly observed by customers. Were quality fully observable, customers could always
immediately fire firms providing them with low quality, meaning all firms would pro-
vide good service in equilibrium. With quality imperfectly observed, customers update

3See Gruber and Owings (1996), which provides empirical evidence that ob-gyns respond
to reduced income caused by lower fertility by providing more C-section deliveries, which are
reimbursed at a higher rate.
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their beliefs about the quality of a provider after each outcome; the less competitive the
market, the less strong this belief needs to be before switching is optimal.

Beyond the effect on customer patience mentioned above, we also consider compar-
ative statics on the gains from trade and discount factors. Surprisingly, if a customer’s
discount factor increases, credence-good providers may produce worse outcomes. The
reason for this is that while customers with higher discount factors are likely to stick
around for longer, thus making their retention more valuable and incentivizing good ser-
vice, longer-tenured customers will have, on average, higher tolerance for bad outcomes,
eroding provider incentives. The quality of service is increasing in firms’ discount factor,
as well as in the price paid by customers.

Much work has been done examining how reputational concerns can induce expert
firms to exert high effort (for example, Mailath and Samuelson, 2001, Sandford, 2010,
Liu, 2011, and Ely and Välimäki, 2003). There has been little work on how the compet-
itiveness of these markets affects incentives for high effort. Two exceptions stand out:
Rob and Sekiguchi (2006) and Hörner (2002).

Rob and Sekiguchi (2006) argue that competitive pressure can incentivize scrupulous
service in non-Markovian repeated-game equilibria with two firms. Exactly one firm
plays high effort in each given period. All customers patronize the high-effort firm, but
observe only a signal imperfectly correlated with effort. If this signal is low, all customers
switch to the other firm, and that firm plays high effort in the next period. This switching
continues indefinitely. Owing to the all-or-nothing nature of the competition, this model
does not speak to what happens as the degree of competitiveness varies, as does our
paper. Indeed, customers do not learn anything upon getting bad outcomes from firms;
the resulting anonymity ensures that even with only two firms, there is an effectively
limitless supply of new firms to switch to.

In Hörner (2002), a continuum of firms provide credence goods, with each either an
inept type or a normal type. Customers patronize only those firms with unblemished
histories, and so the threat to firms of losing all of their customers if caught shirking
motivates competent firms to put forth high effort. While Hörner’s model also relies on
the perpetual threat of customers being stolen away by the competition, with a positive
measure of firms there is no way of varying the competitiveness of the market, as there
is in our paper with a finite number of firms.

Unlike those two papers, we assume a finite number of heterogeneous firms. These
assumptions are crucial to our results on the relationship between competition and
frequency of good outcomes. Our paper is the first to study the link between competition
and customer patience, and the resulting quality of firm service.

Other papers have suggested separation of diagnosis and repair as a partial remedy for
credence-good incentive problems (see Emons, 1997, 2001, Taylor, 1995, and Wolinsky,
1993, 1995), though they note that this is unappealing if there are economies of scope in
combining the two, as with the services of a car mechanic, doctor, lawyer, or accountant.
A small literature exists on the relationship between market structure and quality when
quality is observable only ex post.4 Kranton (2003), Bar-Isaac (2005), and Dana and

4Goods sold in such markets are often called “experience goods.”
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Fong (2011) point out that as markets become more competitive price tends to fall, which
lowers firm margins and decreases the attractiveness of trying to maintain a reputation
by providing high-quality goods, offsetting the competitive effects induced by having
firms compete for market share. A nonmonotonic relationship between competition and
quality arises. The effect identified in this paper, that customers become less patient
with firms as the market becomes more crowded, is novel to this literature; indeed, to
isolate this effect, this paper holds the price of a firm’s service constant in the number of
firms. In a similar vein, Pesendorfer andWolinsky (2003) conclude that price competition
between credence-good providers can lead to poor outcomes when the only way to verify
firm effort is via second opinions. These papers do not examine the relationship between
competition and customer patience studied here.

This paper is also related to the substantial industrial organization literature on
tenure dependence in customer choice of firms. One empirical constant from this litera-
ture is that departure probabilities decline with increasing customer tenure. A natural
question is whether these declining probabilities are the result of customers having a
stronger taste for tenured firms or the result of selection, in which customers who deem
themselves to be ill suited for a particular firm leave over time. Israel (2005) uses ex-
ogenous price variation in insurance plans to empirically distinguish between these two
effects and finds that while both are important, selection seems to play a much larger
role. The effect modeled in this paper is quite similar, in that customers prefer some
firms to others, and so a decision to switch is made when a customer deems it sufficiently
likely that she can get a better match elsewhere. Long-tenured customers are then those
who have selected into being long-tenured, i.e., those who have sampled the services of
a firm and decided that they are well matched. This paper also suggests a mechanism
through which customers can learn about firms they have hired over time in order to
inform the tenure decisions discussed in the tenure-dependence literature.

2 Model

2.1 Market Structure

Consider a market in which each of N firms repeatedly provides credence goods to a
continuum of customers. Each customer is matched with at most one firm, and while
customer–firm relationships stretch over many discrete time periods, they can be discon-
tinued at any time by dissatisfied customers, who can then switch to a new firm at cost
s ≥ 0. Suppose that each period of a match between a firm and a customer produces
either a good outcome (G) or a bad outcome (B). A good outcome for a customer might
be a car that has no further mechanical problems after visiting a mechanic, or a patient
who feels better after visiting a doctor’s office. The probability of a good outcome is in-
creasing in firm effort e ∈ [0, E], with per-customer cost c(e) strictly increasing, convex,
and differentiable. Think of effort as a firm’s investment in its business, such as hiring
and training competent employees or purchasing and maintaining high-quality equip-
ment. Effort captures both the scrupulousness of firms (e.g., in that higher effort means
more honest diagnoses) and their literal effort invested in fixing customers’ problems.
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A firm’s effort is chosen anew each period, and is not customer-specific; effort is the
same for all customers, regardless of their history with the firm. Time extends infinitely
forward and backward.

The quality of a match between a customer and firm is heterogeneous; each pairing
is either a good match or a bad match, with match quality being drawn “independently”
of all other matches at the time the match is formed, so that a fraction µ of all new
matches are good.5 A good customer–firm match occurs when, for example, a mechanic
is particularly well suited to diagnose and repair the specific problems a customer’s
make and model of car is likely to have, or a doctor has a bedside manner or specific
expertise that particularly meet a patient’s needs. A more general structure would
see match quality correlated across customers of a given firm, but for tractability we
assume uncorrelated match quality. An oft-used alternative assumption (see Mailath and
Samuelson, 2001, Hörner, 2002, Ely and Välimäki, 2003) is that match quality is perfectly
correlated across customers, with each firm being innately “good” or “bad.” Given the
finite number of firms in this model, this paper’s structure allows for stationarity in the
total measure of good and bad matches.

Neither customers nor firms can directly observe match quality, though both share a
(correct in equilibrium) belief about the fraction of all matches that are good. Customers
do not observe the effort their matched firm puts forth, just whether they get a good
or a bad outcome in each period. A customer updates her belief that she is in a good
match upward or downward after each good or bad outcome, respectively. Specifically,
a good match generates a good outcome in each period with probability f(e), where
f : [0, E] → [0, 1] satisfies f(0) = 0, f ′(e) > 0, and f ′′(e) ≤ 0 for all e ∈ (0, E),
while a bad match generates a bad outcome with probability 1. All customers share
a belief about firm effort t = P (G | good match), which is correct in equilibrium (i.e.,
t = f(e)). Outcomes are independent across all customers and firms; effort e produces
a good outcome for a fraction f(e) of a firm’s good matches. It follows that a customer
who believes himself in a good match with probability µ updates this belief to µG = 1
after a good outcome and µk = (µ(1− t)k)/(µ(1− t)k + (1−µ)) < µ after k consecutive
bad outcomes.6 Firms are aware of aggregate statistics regarding their customers (i.e.,
the total measure of those who received a bad outcome last period), and condition their
effort choice on this.

Once a customer has experienced a good outcome, she has no reason to ever switch
firms, and will remain permanently matched with the firm that produced the good
outcome. However, a customer who has realized only bad outcomes from a match may

5Simply requiring that the fraction µ of new matches be good would avoid the well-known
problems with taking the distribution of outcomes of a continuum of i.i.d. random variables to
be the same as that of the random variable itself (see Judd, 1985, Feldman and Gilles, 1985,
and Al-Najjar, 1995). However, it is helpful to present the model in terms of independent
draws.

6Throughout, we slightly abuse notation, as µ denotes both the (objective) fraction of
all matches that are good, and the (subjective, but correct in equilibrium) beliefs that both
customers and firms have over the fraction of all matches that are good.
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choose to pay search cost s and switch firms at any time. Let the term probationary
customer refer to any customer still active in the market who has not yet received
a good outcome from any firm. Finally, a customer may also switch costlessly to an
outside option at any time – for example, performing maintenance on her own car or
eschewing doctors completely.

Surplus π is generated each period in which a customer receives a bad outcome (B);
all of this surplus goes to the firm. Surplus π + A is generated in a period with a good
outcome (G), of which π goes to the firm and A to the customer. This structure amounts
to firms charging a constant price π, regardless of the competitiveness of the market.7

Were price to decrease in number of firms, as seems reasonable, the effect would be
identical to lowering the exogenous π, discussed in section 4.3.3, and therefore would
partially offset the direct competitive effects of reducing customer patience. Customers
receive per-period payoff R < A from their outside option. Suppose that a fraction 1−δ
of customers leave the market for exogenous reasons each period, so that each customer
discounts future payoffs at rate δ. Firms discount future profits at rate β.

Informally, a customer’s choice variable is a patience level, the number of consecutive
bad outcomes she will tolerate before switching away from a given firm. This paper’s
central point is that this patience level varies in a customer’s history. A customer who
is new to the market and therefore matched with her first firm may have a different
patience level with that firm from that of one who has already tried and switched away
from several firms. Specifically, we will show that patience is decreasing in the customer’s
payoff upon switching. As this payoff decreases with increasing negative information she
has about the firms in the market, a customer will tend to be more patient the more
firms she samples. Similarly, a customer will be more patient the fewer firms there are
in the market, as her payoff to switching away from a firm is decreasing in the number of
firms left to try out. Intuitively, someone living in a small town with only two or three
doctors will tolerate a lower quality of care than will a patient living in a big city where
there are hundreds of available doctors.

A firm’s incentive to exert effort comes from the desire to retain customers. If cus-
tomers are very patient, a firm has little incentive for costly effort. With very impatient
customers, who might switch away from a firm after only one bad outcome, firms have a
strong incentive to invest in effort in order to impress their customers within the limited
window during which they have them.

In this environment, we show that firm effort is increasing in the number of the firms
in the market. This happens for two reasons. One, the more firms, the less patient
the average customer will be in absorbing bad outcomes, incentivizing firms to exert
higher effort. Two, the more firms, the longer it will take for a customer who switches
away from a firm to (eventually) return, after finding other firms in the market to be
equally unsatisfactory. The following two numerical examples illustrate both of these

7It is easy to construct collusive repeated-game equilibria with this feature, in which de-
fecting firms are punished by an extended period of mutually destructive behavior. See the
introduction for a discussion of papers examining the tension between price competition and
incentives for high quality in credence-goods markets.
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mechanisms.

2.2 Two Numerical Examples

2.2.1 No Search Costs, s = 0

Suppose that switching is costless. Here, any customer who has never experienced a
good outcome will have patience 1, switching away from a match after one B outcome,
while remaining permanently matched with the first firm to produce a G outcome for
her. Therefore, a hypothetical unlucky customer who only receives bad outcomes will
cycle through the market’s N firms for one period each, lowering her belief that each
firm is a good match to µ1. After sampling each firm for one period, she will sample
each firm again; after two bad outcomes, her posterior belief that each firm is a good
match is µ2 = (µ(1 − t)2)/(µ(1 − t)2 + 1 − µ). She will continue cycling through all
firms in the market until she has experienced k bad outcomes from each firm, where k is
determined endogenously by the unique integer such that the value of matching with a
firm believed to be a good match with probability µk is less than the value of the outside
option, (R)/(1− δ).8

How do firm incentives change as the market becomes more competitive and N
increases? Unlike the case with positive search costs, customer patience is unaffected by
an increase in N . However, firms’ incentives change along a different dimension. With,
for example, N = 2, a firm knows that many of its customers who switch after receiving
a bad outcome will return 2 periods later after also getting a bad outcome from the
firm’s rival. If, however, there are 20 firms in the market, it is much less likely that a
customer who switches away from a firm will ever return, and it will take a longer time
if she does. Therefore, the more firms there are in the market, the more urgency there
is for a firm to retain its customers, and hence the greater the incentive to exert high
effort.

Consider the numerical example of Table 1. We show in the Appendix that if there
are two firms in this market, both exert effort e∗ = 5, while if there three firms, all
three exert effort e∗ = 6.55 in the model’s symmetric steady-state equilibrium. In either
case, a new customer samples each firm sequentially two times, stopping at the first G
outcome or with her outside option after 2N periods.9 Firms take customer patience
as given and equate the marginal cost of effort with the marginal benefit of effort. The
latter is, informally, equal to the marginal increase in permanently matched customers
multiplied by the value of such customers, (π)/(1 − δ), minus the marginal decrease in
number of returning customers, multiplied by the value of a returning customer.

8We defer a more formal description of customer behavior under these, or any, circumstances
to section 3.1.

9With two firms (t = 0.5), after two B signals at any firm, the payoff to returning to that
firm for one more period is µ2t(A+ (δtA)/(1 − δ)) + (1− µ2t)δ(R)/(1 − δ) = 75.75, while the
payoff to leaving immediately is (R)/(1− δ) = 100. After only one bad outcome, the payoff to
sampling a firm one more time is µ1t(A+ (δtA)/(1 − δ)) + (1 − µ1t)δ(R)/(1 − δ) = 126.3. A
similar calculation shows that with three firms (t = 0.655), customers also have patience 2.
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Table 1
Example Parameters under which Effort Increases in Competition

even with Zero Search Cost

Model object Object name Value

Search cost s 0
Pr(good match) µ 0.5
Payoff to G outcome A 15
Value of outside option R 1
Customer discount factor δ 0.99
Firm discount factor β 0.99
Firm per-customer profit π 12.065
Pr(G | good match) f(e) e/10
Firm cost function c(e) 0.07e2

In the next example, customers choose not to sample any firm more than once, yet
we get a very similar effect. The reason is that even with only one sample, customers
are less patient in absorbing bad outcomes the more firms there are, incentivizing high
effort.

2.2.2 s > 0: Customers are Less Patient the More Firms they Try Out

Now consider the case where s = 2.2, that is, any customer wishing to switch firms must
pay a switching cost of 2.2 to do so. Assume that it is not necessary to pay this switching
cost to switch to the outside option. Under the model parameters in Table 2, unlucky
customers who never get a good outcome cycle through all the firms in the market once,
with increasing patience, before permanently switching to their outside options.

Table 2
Example Parameters under which Customers Pay a Positive Switching Cost and

Endogenously Choose to Visit Each Firm Once, with Patience Increasing in Firms Sampled

Model object Object name Value

Search cost s 2.2
Pr(good match) µ 0.5
Payoff to G outcome A 1.8
Value of outside option R 1
Customer discount factor δ 0.99
Firm discount factor β 0.99
Firm per-customer profit π 25
Pr(G | good match) f(e) e/10
Firm cost function c(e) 0.2323e1.2

First, suppose that N = 1. We show that there is an equilibrium in which the
market’s one firm plays effort 6.5. To do this, we show that if customers have the
belief t = 0.65 (a 65% chance of a good outcome conditional on a good match), they



9

optimally have patience level 3 with the firm, switching permanently to their outside
option after three consecutive bad outcomes, while if customers play patience level 3,
the firm optimally plays effort e∗ = 6.5.

Given a belief t = 0.65, customers choose their patience level as follows. After
each bad signal, they compare the payoff of permanently choosing their outside option,
R/(1−δ) = 100, with that of remaining matched for one more period, µkt(A+(δtA)/(1−
δ)) + (1 − µkt)δR/(1 − δ). The patience is the largest number k for which the former
is larger than the latter, so after k bad outcomes, a customer prefers his outside option.
After two bad outcomes, the payoff to remaining for one more period is µ2t(A+(δtA)/(1−
δ))+(1−µ2t)δR/(1−δ) = 100.32, while the payoff to leaving immediately is R/(1−δ) =
100. Similarly, after three bad outcomes, the payoff to leaving immediately is 100,
while the payoff to giving the firm one more period to produce a good outcome is
µ3t(A+(δtA)/(1−δ))+(1−µ3t)δR/(1−δ) = 99.50. Therefore, each customer optimally
chooses a patience level of 3.10

If all new customers have patience 3, the firm compares the marginal cost of effort
(c′(e) = 0.27876e0.2) against the marginal benefit, which is the increase in present dis-
counted lifetime profits from convincing a customer with patience 3, 2, or 1 to remain
matched in perpetuity, multiplied by both the marginal increase in probability of a good
outcome with more effort, and the measure of customers with patience 3, 2, and 1, re-
spectively. In a steady-state equilibrium, in which the measure of each type of customer
is constant in time, equation (6) in section 3.2.2 formally solves for the equilibrium
marginal benefit. Jumping ahead to that result, we find that, given a customer patience
of 3, we have c′(e) = mb(e) at e = 6.5, and so new customers having patience 3 and the
single firm playing e = 6.5 comprise a steady-state equilibrium.

Now suppose that N increases to 2. We show that both firms playing effort level 7.4
in every period is an equilibrium. Given customers’ belief t = 0.74, customers will have
patience 2 with the first firm they match with, and patience 3 with the second firm. As we
will show that no customer who switches away from a firm will ever return, a customer’s
patience level at his second matched firm is necessarily the same as that when there is
only one firm, which is 3. The patience level at the first matched firm is calculated in the
same way, except the value of switching is not equal to R/(1−δ) = 100, but the value of
being newly matched with the second firm, given explicitly in Proposition 3, in section
3.1.1. Applying the result of Proposition 3, a customer’s payoff to switching firms at
search cost s = 2.2 is 112.83. It is then direct to calculate that a customer prefers to
switch away from her first matched firm after two consecutive bad outcomes. The lower
patience level at a customer’s first firm reflects this higher continuation payoff. Once at
the second firm, her outside option is the higher of the value of returning to the first
firm (namely, µ2t(A + (δtA)/(1 − δ)) + (1 − µ2t)δR/(1 − δ) − s = 98.62) and that of
permanently switching to the outside option (namely, R/(1− δ) = 100).

Given that customers have patience 2 and 3 at their first and second firms, respec-
tively, in a steady state firms optimally choose effort e = 7.4. Again, this follows from
Proposition 4 in section 3.2.3. Intuitively, since the average patience level among a firm’s

10This follows directly from Proposition 2 in the sequel.
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customers is lower when N = 2 than when N = 1, there is a greater benefit to send-
ing a customer a good signal, and so the marginal benefit of effort increases, increasing
equilibrium effort.11

It is important to understand the reason that customers do not immediately switch
away from a firm upon seeing a bad outcome. This is because there is an option value
to staying with that firm for another period or two that is forfeited by switching, since
returning to that firm will be too costly. In the case with N = 2, consider the problem of
a customer who has just received one bad outcome. If she were to switch immediately, her
payoff upon returning would be µ1t(A+(δtA)/(1−δ))+(1−µ1t)δR/(1−δ)−s = 99.9395,
which is worse than her outside option, so a customer who leaves, even after only one
period, will never return. To switch, then, is to permanently give up on the firm, despite
the chance that it is a good match that got unlucky in producing one bad outcome.
The customer therefore decides to stay one more period to see if that produces a good
outcome. If not, she deems it sufficiently unlikely that the firm is a good match that
she is willing to give up and move on.

3 Solving the Model

The examples of sections 2.2.1 and 2.2.2 demonstrate how to solve the model for general
s. If s is very low, as in section 2.2.1, customers cycle endlessly through firms until
getting a good signal, at which point they stop permanently. If s is higher, as in section
2.2.2, a customer tries each firm for a few periods, leaving after several bad outcomes,
never to return, and remaining permanently matched after the first good outcome.

For a general s, other possibilities exist besides those from the two examples. If s is
small but positive, for example, customers might try each firm in the market twice, for
a few periods each, with their patience increasing as they cycle through firms with only
bad outcomes. For analytical tractability, we focus on the customer behavior exhibited
in section 2.2.2: s is high enough that customers do not return to already fired firms,
even after uniformly bad outcomes from all other firms. Letting V [µk] describe the
payoff of matching with a firm believed to be a good match with probability µk, the
following is a sufficient condition for a customer to never return to already fired firms,
but to still be willing to sample each firm once for several periods, stopping upon her
first good outcome:

(1) s ∈

[

V (µ1)−
R

1− δ
, V [µ]−

R

1− δ

]

.

An alternative assumption to (1) that produces the same behavior is that s = 0 the
first time a firm is switched to and s = ∞ the second time. As the exposition is vastly
simpler in this case, we will refer to this alternative assumption throughout the rest of
the paper: customers are simply assumed not to return to already fired firms, behavior

11Formally, the increased profit from producing a G outcome for a patience 1 customer is
(βπ)/(1 − β), while the increased profit from producing a G outcome for a customer with
patience p > 1 is (βpπ)/(1 − π).
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that arises endogenously in section 2.2.2. After trying every firm in the market once,
for a few periods each, customers who receive only bad outcomes permanently switch to
their outside option.12

Two effects of competitiveness in a credence-good market are described in sections
2.2.1 and 2.2.2. One, as the number of firms increases, it takes customers longer to
return to already fired firms, raising the urgency of keeping them and thus increasing
firm effort. Two, as the number of firms increases, average customer patience decreases,
meaning that firms have less time in which to impress customers before they leave after a
series of bad outcomes. The second effect is driven by customers becoming more patient
as they run out of options, a phenomenon described in section 3.1. The first effect does
not appear under the assumption that customers do not return to already fired firms,
though the Appendix demonstrates how to solve the model if switching is cheap enough
so that customers do return.

We now solve a general model in which customer patience is endogenous, varying
across firms as they are sampled in sequence. We solve for the model’s stationary,
symmetric equilibria, in which firms and customers play identical strategies across time,
all state variables are constant across time, and each customer and firm optimizes given
the behavior of all other agents in the market (see section 3.3 for a full definition of
equilibrium). We begin in the next section by examining optimal customer strategies.

3.1 Customers

A customer receives payoff A, 0, or R upon a good outcome, upon a bad outcome, and
from her outside option, respectively. Her goal is to maximize the total discounted value
of the sum of these payoffs over her lifetime. A match believed to be good with proba-
bility µ generates a good outcome and payoff A with probability µt, and a bad outcome
and payoff 0 with complementary probability. A prior belief of µ gets downgraded to
µj = µ(1 − t)j/(µ(1 − t)j + 1 − µ) upon j consecutive B outcomes, and upgraded to 1
upon a G outcome.

As a customer’s payoff to remaining matched is decreasing in her belief about her
firm’s being a good match, there exists some cutoff belief below which firing is optimal.
Importantly, this might not be where her one-period payoff is higher at another firm or
out of the market. For example, if there is only one firm in the market, even if µtA < R,
a customer may choose to remain with the firm for a few more periods, because of the
chance that the firm actually is a yet undiscovered good match. The same logic applies
to a market with more than one firm: because customers do not return to a firm they
have already fired, customers may remain with an underperforming firm even if they

12One possible criticism of a model in which s = 0 the first time a customer considers
switching to a firm, but s = ∞ the second time he considers switching, is that the number of
“free” searches given to a customer is increasing in N , and thus results on the how firm effort
varies in the competitiveness in the market may be driven by cheaper search, and not increased
competitiveness. However, this assumption is isomorphic to s ∈ [V (µ1) − R/(1 − δ), V [µ] −
R/(1− δ)] for all visits. As the example of section 2.2.2 demonstrates, here an increase in the
competitiveness of the market spurs firms to increase their effort in order to retain customers.
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could get a higher one-period payoff elsewhere, because of the informational value of the
firm’s outcomes, which are only accessible to a customer while matched with that firm.

As µj is decreasing in the number of bad outcomes experienced, each customer
chooses how many bad outcomes she will absorb from a given firm before ending the
match. She may be more patient with the second firm she tries than with the first,
and so on. A complete description of her strategy is a set of N numbers, describing her
patience level at the first firm she visits, the second firm, and so on up to the Nth firm.13

A customer switches firms when her payoff from being matched with that firm,
including the option value resulting from the possibility that that firm is a good match,
falls below her continuation payoff, defined as the highest payoff a customer can get upon
leaving her current firm, and denoted by Γ. Proposition 1 establishes that a customer’s
optimal strategy is fully characterized by the following condition on her posterior belief
µ:

remain matched if µ ≥
Γ(1− δ)

t
[

A+ δtA
1−δ

− δΓ
] ,

switch if µ <
Γ(1− δ)

t
[

A+ δtA
1−δ

− δΓ
] .

Proposition 1 A customer with continuation payoff Γ has a cutoff belief of

µ̄(Γ) =
Γ(1− δ)

t
[

A + δtA
1−δ

− δΓ
] ;

switching is optimal if and only if her posterior belief is below µ̄(Γ).

Proof Let W [k, µ,Γ] be the payoff of being newly matched with a firm believed to be
a good match with probability µ, with continuation payoff Γ and patience k.

Straightforward calculations give that

W [1, µ,Γ] = µt

[

A+
δtA

1− δ
− δΓ

]

+ δΓ ≥ Γ ⇐⇒ µ ≥
Γ(1− δ)

t
[

A+ δtA
1−δ

− δΓ
] ,

so switching is preferred only if µ < µ̄. A simple inductive argument gives that if µ < µ̄,
then W [1, µ,Γ] > W [k, µ,Γ] for k ∈ {2, 3, . . .}, and so switching immediately is preferred
to some higher patience level. Q.E.D.

Using Proposition 1 and Bayes’s rule, Proposition 2 gives an explicit relationship
between a customer’s continuation payoff Γ and her patience level p.

13In addition to the order in which she tries the firms, a customer could also usefully condi-
tion her strategy on a firm’s state variables, such as the number of customers each firm has.
However, as we eventually solve for symmetric, stationary equilibria, these state variables are
identical across all firms, and so can be ignored without cost.
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Proposition 2 Optimal patience is given by the decreasing function p(Γ), where

p(Γ) =

















log
(

µ̄(Γ)(1−µ)
µ(1−µ̄(Γ))

)

log(1− t)

















where ⌈⌈x⌉⌉ = {x, x+ 1} if x ∈ Z, and is a standard ceiling function otherwise.

Proof By Proposition 1, a customer with continuation payoff Γ waits p periods upon
a new match with a firm if µp−1 ≥ Γ(1 − δ)/(t(A + δtA/(1 − δ) − δΓ)) and µp <
Γ(1− δ)/(t(A+ δtA/(1− δ)− δΓ)).

Define µ : R+ → [0, 1], with µ(x) = µ(1− t)x/(µ(1− t)x + 1− µ). Direct calculation
gives that µ(x) = µ̄(Γ) if and only if

x =
log
(

µ̄(Γ)(1−µ)
µ(1−µ̄(Γ))

)

log(1− t)
.

As µ(x) is clearly decreasing in x, the result follows from Proposition 1. Q.E.D.

p(Γ) is generically single-valued, but takes on two values on the countable set where
[log([µ̄(Γ)(1 − µ)]/[µ(1 − µ̄(Γ))])]/[log(1 − t)] is an integer. The resulting indifference
over two patience levels guarantees the existence of equilibrium (see sections A.1.1 and
A.1.2).

In a symmetric, stationary equilibrium with all firms playing the same strategies,
once a good match has been found there is no reason to ever switch to a new firm, and a
customer becomes permanently matched. Likewise, once a customer chooses her outside
option, she gains no new information and so has no reason to reenter the market. A
customer’s strategy is therefore completely described by the function p(Γ).

We now calculate continuation payoff Γ, as a function of the number of unsampled
firms remaining.

3.1.1 Customers’ Continuation Payoffs Vary in Number of Firms

When a probationary customer is matched with the last available firm in the market,
her continuation payoff is the value to taking her outside option in perpetuity, R/(1−δ).
When matched with the second-to-last available firm, it is the value to being matched
with the last firm, and so on. Numbering the firms she tries backwards from N (the
first firm she tries) to 1 (the last firm in the market she tries), we can say that her
continuation payoff when matched with firm k is the value to being matched with firm
k − 1.

Proposition 3 provides a closed-form expression for the payoff to a new match when
the continuation payoff is Γ, denoted by Z[Γ]. Note that Z[Γ] = W [p(Γ), µ,Γ].
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Proposition 3 A customer with continuation payoff Γ has expected payoff Z[Γ] at the
beginning of a match:

Z[Γ] = µT

(

A +
δtA

1− δ

)

+

p(Γ)−1
∑

k=1

µkt

(

A+
δtA

1− δ

) k−1
∏

j=0

δ(1− µjt) + Γ

p(Γ)−1
∏

k=0

δ(1− µkt).

Proof A probationary customer’s payoff upon receiving a good outcome is A+δtA/(1−
δ), discounted appropriately. The probability of receiving this payoff in the first pe-
riod of a new match is µt, in the second period is µ1t(1 − µt), in the third period
is µ2t(1 − µt)(1 − µ1t), and so on. A probationary customer receives p(Γ) consecu-
tive bad outcomes with probability (1 − µt)(1 − µ1t) . . . (1 − µp(Γ)), in which case she
gets payoff Γ, weighted by her discount factor δp(Γ). Weighting her possible payoffs
(A+ δtA/(1− δ)), δ(A+ δtA/(1− δ)), . . . , δp(Γ)−1(A+ δtA/(1− δ)), δp(Γ)Γ by their prob-
abilities and summing gives us the expression in the proposition. Q.E.D.

By Proposition 3, a customer’s payoff upon being matched with her last firm is
Z[R/(1−δ)], her payoff to being matched with her second-to-last firm is Z[Z[R/(1−δ)]],
and so on. Letting Zk[Γ] denote the kth iteration of the function Z on continuation payoff
Γ, we find Zk[R/(1 − δ)] as the value to a customer of being on her kth-to-last firm.
Clearly, Z[Γ] > Γ for any Γ > 0, so that expected payoff is increasing in the number of
firms left to sample.

Propositions 2 and 3 describe a customer’s strategy. For example, a customer with
7 firms left to sample has continuation payoff Z6[R/(1 − δ)], and therefore patience
p7 = p(Z6[R/(1 − δ)]). Generally, since p(Γ) is weakly decreasing, a customer is less
patient the more firms there are serving the market, becoming gradually more patient
as she samples firms unsuccessfully.

3.2 Firms

Choosing high effort is costly and confers no immediate benefit on a firm, but makes it
more likely that firm will be able to identify itself as a good match to its probationary
customers, which in turn leads to longer-tenured customers.14 This section studies the
trade-off between concerns for long-run customer retention and short-run profit.

Two state variables are relevant to the effort decision. First, an element of the vector
~x = [x1, x2, . . . , xp1 ] is the measure of probationary customers who are well matched
but who will nonetheless fire the firm after k bad outcomes, for k = 1, . . . , p1. The
dimension of ~x, which is p1 < ∞, is determined endogenously as the patience level of the
most patient customers a firm has: those on their last firm. Second, let m denote the
measure of a firm’s permanently matched customers. A third state variable describing
the total measure of customers a firm has, T = ~1′~x+ U +m, where U denotes the total

14Playing a higher effort level has no effect on a firm’s permanently matched customers, as
they already believe their current match to be high quality with probability 1. However, effort
is assumed to apply to all customers.
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measure of poorly matched probationary customers, can be described in terms of ~x and
m, as U is exogenous to a firm’s effort decision. Finally, let each element of the vector
~eta = [η1, η2, . . . , ηp1] denote the measure of new customers arriving each period who
have patience k. In a symmetric equilibrium, ~eta is determined by the effort levels of
other firms.

A firm with state variables (~x,m, T ) chooses effort e to maximize its discounted infi-
nite string of profits. A straightforward application of the contraction mapping theorem
provides for the existence of a differentiable value function depending on state variables,
following Stokey, Lucas, and Prescott (1989). Therefore, let V [~x,m] equal the value to a
firm of having state variables (~x,m). Then, letting ~x′ and m′ represent one-period-ahead
values, we have

V [~x,m] = max
e,~x′,m′

T (π − c(e)) + βV [~x′, m′](2)

subject to m′ = mδ + f(e)δ~1′~x,

x′

k = xk+1δ(1− f(e)) + µηk, k = 1, 2, . . . , p1 − 1,

x′

p1
= µηp1.

A firm’s per-period profit is T (π− c(e)); it receives a fee of π and pays a cost of c(e)
for each customer it has, and its total measure of customers is given by T . Customers
that have patience level k in one period will have patience level k − 1 in the next
period if they get a bad outcome and will be permanently matched if they get a good
outcome. Thus x′

k, the measure of tomorrow’s customers with patience level k, is given
by δ(1−f(e))xk+1, the measure of today’s customers with patience level k+1 who both
get a bad outcome and survive, plus µηk, the measure of well-matched new customers
with patience k.

Assigning the first p1 + 1 constraints, in order, multipliers θ0, θ1, . . . , θp1 , the first-
order conditions of (2) are

e : c′(e)T = f ′(e)δ

(

θ0~1
′~x−

p1−1
∑

k=1

θkxk+1

)

,

m′ : βVm′[~x′, m′] = θ0,

x′

k : βVx′

k
[~x′, m′] = θk for k = 1, 2, . . . , p1 − 1.

The envelope theorem gives the derivatives of the value function with respect to the
state variables:

xk : Vxk
[~x,m] = π − c(e) + θ0δf(e) + θk−1δ(1− f(e)),

m : Vm[~x,m] = π − c(e) + θ0δ,

where θ0 = 0, reflecting the fact that the value to a firm of a customer with patience 1
who receives a bad signal is 0.

Combining the first-order condition for m′ with the envelope condition for m gives us
the recursive relationship θ0 = β(π− c(e) + δθ′0), where θ′0 is the one-period-ahead value
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of the multiplier θ0. Repeatedly substituting this expression for θ0 into the envelope
condition for m gives us that

Vm[~x,m] =
π − c(e)

1− βδ
,

and so the benefit to a firm of adding to its pool of matched customers is that it receives
π−c(e) from any matched customer for as long as that customer lives, given discount rate
β and death probability 1 − δ. Similarly, the value to adding a well-matched customer
with patience k is equal to Vm discounted by the probability that the customer will leave
after receiving k bad outcomes:15

(3) Vxk
[~x,m] =

π − c(e)

1− βδ
(1− [βδ(1− f(e)]k).

Combining the first-order condition for effort e and the above expressions for Vxk
and

Vm produces an equation determining the steady-state effort that is free of Lagrange
multipliers:

(4) c′(e) =
1

T
f ′(e)βδ

π − c(e)

1− βδ

[

~1′~x−

p1−1
∑

k=1

xk+1

(

1− [βδ(1− f(e))]k
)

]

.

If (4) holds, then the marginal benefit of effort e equals the marginal cost of effort e in
the steady state, given that all other firms are also playing steady-state strategies of e
and customer strategies are given by Proposition 2.

3.2.1 Stationary State Variables

In any stationary, symmetric equilibria, the state variables in the equality (4) can be
calculated explicitly. First consider pure equilibria, in which customers do not mix
over patience levels; allowing customers to mix is important mainly for the existence of
equilibrium.

Let γ(e) = δ[1− f(e)] describe the fraction of well-matched customers who both live
and get a bad outcome each period. Let a(p, e) = µγ(e)p+(1−µ)δp describe the fraction
of customers arriving at a firm with patience p who will eventually fire that firm. Then,
if there are N firms, we have ηpN = 1/N , ηpN−1

= ηpNa(pN , e), and so on. Generally,

ηpk =
1

N

N
∏

l=k+1

a(pl, e).

For fixed effort level e, TN (e) obeys the following dynamic:

∆TN (e) = −(1 − δ)TN (e) +

N
∑

k=1

ηpk −

N
∑

k=1

ηpka(pk, e),

15In deriving equation (3) from the first-order conditions, we specify that state variables and
effort are stationary, which anticipates the equilibrium condition that state variables must be
in the steady state.
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where (1− δ)TN (e) is the measure of a firm’s customers who die each period.
∑N

k=1 ηpk
is the total measure of new customers a firm gets each period, some new to the market,
some coming from other firms.

∑N
k=1 ηpka(pk, e) is the measure of customers each firm

has who permanently fire that firm after an unsuccessful stay each period. Setting
∆TN (e) to 0 yields

(5) TN (e) =

∑N

k=1 ηpk(1− a(pk, e))

1− δ
.

Equation (5) describes the total number of customers each of N firms has, given a steady
state with effort e.

3.2.2 Marginal Benefit of Effort when N = 1: mb(p, e)

When N = 1, all customers have patience p1 = p(R/(1−δ)). We have ηp1 = 1 and ηk = 0
for all k 6= 1, as all new customers go to the market’s one firm, leaving the market only
after p1B outcomes. The equilibrium state vector ~x has elements xp1−k = µ[δ(1−f(e))]k

for k = 0, 1, . . . , p1 − 1.
Let mb(p, e) refer to the marginal-benefit side of the firm’s optimality condition (4)

under constant effort, with one firm, and all customers having patience p. From equation
(5), substitute T = (1− a(p1))/(1− δ). With patience p,

~1′~x = µ
1− γ(e)p

1− γ(e)
,

p−1
∑

k=1

xk+1 = µ
1− γ(e)p−1

1− γ(e)
,

and

p−1
∑

k=1

xk+1[βγ(e)]
k = µβγ(e)p−11− βp−1

1− β
.

Substituting each of these into (4) gives

(6) mb(p, e) =
1− δ

1− a(p, e)
µf ′(e)βδ

π − c(e)

1− βδ
γ(e)p−11− βp

1− β
.

The set of interior, nontrivial equilibria with N = 1 is then {e ∈ (0, E) : c′(e) =
mb(p1, e)}.

3.2.3 Marginal Benefit when N ≥ 2 is a Weighted Average of mb(p, e) Curves

With N ≥ 2 firms in the market, customers sampling the kth-to-last firm have patience
pk = p(Zk−1(R/(1 − δ))), for k = 1, 2, . . . , N .16 Proposition 4 establishes that the
marginal benefit to a firm when facing customers with different patience levels is a
weighted average of the marginal benefit to facing each type of customer individually,
with weights increasing in how many customers of that type a firm sees.

16Let Z0[x] = x.
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Proposition 4 For any N > 0, the set of pure, interior, nontrivial equilibria is
{e ∈ (0, E) : c′(e) =

∑N

k=1 αkmb(pk, e)}, where
∑N

k=1 αk = 1.

Proof With patience levels p1, p2, . . . , pN , we have xk = µ
∑p1

j=k ηjγ(e)
j−k. Thus,

~1′~x = µ

N
∑

j=1

ηpj
1− γ(e)pj

1− γ(e)
,

p1
∑

k=2

xk = µ

N
∑

j=1

ηpj
1− γ(e)pj−1

1− γ(e)
,

and

p1
∑

k=2

xk(βγ(e))
k−1 = µ

N
∑

j=1

ηpjβγ(e)
pj−1 1− βpj−1

1− β
.

Substituting these three equalities into the marginal-benefit side of (4) and solving yields
a marginal benefit of

(7) N
1− δ

1−
∏N

k=1 a(pk, e)
µf ′(e)βδ

π − c(e)

1− βδ

N
∑

j=1

ηpjγ(e)
pj−11− βpj

1− β
,

which reduces to
∑N

k=1 αkmb(pk), where

αk =
(1− a(pk, e))

∏N

l=k+1 a(pl)

1−
∏N

k=1 a(pk, e)
.

It is direct that
∑N

k=1 αk = 1. Q.E.D.

3.3 Definition of Equilibrium

In the symmetric, stationary equilibria we solve for, state variables and effort choices
are identical across firms and across time, and both firms and customers optimize:

Definition 1 A symmetric, stationary equilibrium is an effort level e ∈ [0, E], patience
levels ~p = [p1, p2, . . . , pN ], state variables ~x = [x1, x2, . . . , xpN ], m, U , and ~eta, and a
belief t for customers such that:

(1) Each customer’s patience level is optimal given belief t and outside option Γ, as
described in Propositions 2 and 3.

(2) Firm effort e is optimal given state variables m and ~x, and vector ~eta. In particular,
any interior equilibrium effort level e satisfies the firm’s first-order condition given
in equation (4).

(3) Effort e and state variables ~x, m, U , and ~eta are stationary and symmetric across
all N firms.

(4) Each customer’s belief t is correct, i.e., t = f(e).

An interior equilibrium is an equilibrium involving effort e ∈ (0, E).

Throughout, we refer to equilibria in which customers are never indifferent over
different patience levels and so do not mix as pure equilibria, and call those that involve
customers mixing mixed equilibria.



19

4 Results

We now turn to analyzing the model and presenting results, beginning with two illustra-
tive numerical examples. We then discuss the existence of equilibria, and comparative-
statics results on N , δ, β, π, and A. The paper’s main result, that firm effort is increasing
in the number of firms because customers are less patient in more competitive markets,
is discussed in section 4.3.1. The section concludes with a discussion of welfare in section
4.4.

4.1 Two Numerical Examples

Adopt the shorthandmbN =
∑N

k=1 αkmb(pk, e) for the steady-state equilibrium marginal
benefit of effort when there are N firms active, and mc = c′(e) for the marginal cost of
effort. Figure 1 illustrates equilibrium incentives, here for N = 1. All customers have
patience p1, which decreases from 14 to 11 over e ∈ [2.8, 4] (the domain of the graph),
where e is the steady-state effort level. Then mb1, the bold line on the graph, equals
mb(14, e) for the leftmost portion of the graph, mb(13, e) for the second part, and so
on, with its discontinuities occurring where the optimal customer patience jumps. e2
and e3 are locations of equilibria; e1, e4, and all other points are not. If, for example,
all customers play patience 12, the firm’s profit-maximization problem (2) has a unique
solution at e3, and given firm effort e3, customers optimally choose patience 12. On
the other hand, if customers have patience 11, the firm’s profit-maximization problem is
solved by e4; however, at e4, customers optimally choose patience 12, and so e4 cannot
be the location of an equilibrium.

Figure 2 depicts mb2 and mc for parameters (δ, β, µ, π, A,R,E) = (0.99, 0.99, 0.4, 50,
20, 1, 10) and functions f(e) = e/10 and c(e) = 0.09e2. The mb curve now is discontin-
uous both where p1 changes and where p2 changes. The discontinuities associated with
changes in p2 are relatively larger, and those associated with changes in p1 relatively
smaller, as there are more customers matched with their first firm than their second.
Figure 2 has two effort levels where mc = mb2: e = 3.207 and e = 3.416. The former
has customers playing strategies p1 = 13 and p2 = 9, while the latter has p1 = 12 and
p2 = 8. Both are locations of pure equilibria.

4.2 Existence of Equilibrium

A trivial equilibrium exists for any N , in which customers believe all firms to be worthless
(t = 0) and thus never hire anyone and so are never proven wrong. In this equilibrium,
customers believe that neither a good match nor a bad match would produce a good
outcome, and therefore a customer’s payoff to entering the market is 0 while her payoff
to immediately taking her outside option is R/(1−δ) > 0. Having no customers, playing
0 effort is clearly optimal for the firms, and so customer beliefs are correct.

Nontrivial equilibrium generically exists if customers are allowed to mix over patience
levels over which they are indifferent and if a customer’s payoff to a good outcome is high
enough relative to her outside option. The latter condition ensures that a firm’s marginal
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Figure 1
The Marginal Benefit of Effort with N = 1 is Constructed from Individual mb(p, e) Curves
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benefit of effort is greater than its marginal cost for very low values of effort, while the
former bridges the discontinuities in marginal benefit stemming from the discreteness of
customer strategies.

Proposition 5, proven in the Appendix, gives sufficient conditions for the existence
of a nontrivial equilibrium.

Proposition 5 For any parameters ~Ψ = (δ, β, µ, π,N,E), there exists a constant K(~Ψ)

such that if A/R > K(~Ψ) a nontrivial equilibrium exists. If, furthermore, c(E) ≥ π, an
interior equilibrium exists.

Owing to the nonmonotonic nature of a firm’s equilibrium marginal benefit of effort,
equilibria are not generally unique. For instance, the example of Figure 2 has two pure
and one mixed equilibrium. It is generally true that equilibria are “close,” i.e., clustered
around one or two jumps in the equilibrium marginal benefit curve. The Appendix
contains a more detailed discussion on existence of equilibria.

4.3 Comparative-Statics Results

Since multiple nontrivial equilibria are possible, we consider comparative-statics calcu-
lations under Definition 2.

Definition 2 A parameter change increases (decreases) equilibrium effort if both the
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Figure 2
With N = 2 Firms, Marginal Benefit of Effort Jumps when Both p1 and p2 Change

2 3 4 5 6 7 8 e

1.4

1.2

1.0

0.8

0.6

0.4

0.2

mc
mb2

Note: The jumps associated with changes in p2 are relatively larger, since there are more
customers at firm 2 than at firm 1.

minimum and maximum effort equilibrium increase (decrease) as a result of the param-
eter change.

4.3.1 Number of Firms: More Competitors Means More Effort

Our most important result is that firm effort is increasing in the number of firms in the
market. This is because customers are less patient the more competitive the market is,
which makes retaining customers relatively more urgent to firms, prompting them to
exert more effort in doing so. We have the following general result.

Proposition 6 Equilibrium effort is increasing in the number of firms, N .

Proof We show that mbN =
∑N

k=1 αkmb(pk, e) is increasing in N ; the proposition then
follows.

First, the function mb(p, e) is decreasing in p. Direct inspection yields

mb(p, e) > mb(p + 1, e) ⇐⇒

∆ =
1− βp

1− µγ(e)p − (1− µ)δp
−

γ(e)(1− βp+1)

1− µγ(e)p+1 − (1− µ)δp+1
> 0.
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We show that ∆ is decreasing in β; as ∆|β=1 = 0, clearly ∆ ≥ 0 for all β, and thus
mb(p, e) is decreasing in p. Now ∂∆/∂β ≤ 0 if and only if

p

1− µγp − (1− µ)δp
≥

(p+ 1)βγ

1− µγp+1 − (1− µ)δp+1
.(8)

(8) holds for all β ∈ (0, 1) if and only if it holds for β = 1, or if

(1− (1− µ)δp+1) +
1

p
µγp+1 −

p+ 1

p
γ(1− (1− µ)δp) ≥ 0.(9)

As the left-hand side of (9) is decreasing in γ, (9) holds for all γ ∈ [0, δ] if it holds for
γ = δ, or if

(10)
1

p
δp+1 −

p+ 1

p
δ + 1 ≥ 0.

Since the left-hand side of (10) is decreasing in δ, the fact that (10) holds for δ = 1
therefore establishes that ∂∆/∂β ≤ 0. Since ∆|β=1 = 0, we therefore establish the claim
that mb(p, e) > mb(p + 1, e).

Second, via Propositions 3 and 2, when the number of firms increases from N to
N +1, customer patience pk is unchanged for k ≤ N , while pN ≥ pN+1. Therefore, from
equation (6), mb(pk, e) is unchanged for k = 1, 2, . . . , N , while mb(pN+1, e) ≥ mb(pk, e)
for k = 1, 2, . . . , N .

Finally, it is direct that if the number of firms increases from N to N+1, the weights
from Proposition 4,

αk =
(1− a(pk))

∏N

l=k+1 a(pl)

1−
∏N

k=1 a(pk)
,

decrease for k = 1, 2, . . . , N . That is, some of the weight assigned to mb(pk, e) in the
weighted average mbN is transferred to mb(pN+1, e) for each k = 1, 2, . . . , N . Given that
mb(pN+1, e) ≥ mb(pk, e) for k = 1, 2, . . . , N , we have mbN < mbN+1.

Conclude that mbN =
∑N

k=1 αkmb(pk, e) is increasing in N , and so equilibrium effort
is also increasing in N . Q.E.D.

Increasing competition thus raises the marginal benefit to effort for firms. As the
mc curve is upward sloping and continuous, shifting the mbN curve upwards must then
increase the effort level at the points of intersection between the two curves. Increasing
N does not affect the decision of a customer to enter or not enter the market, so the full
result is that if there is a nontrivial equilibrium when there are N firms, the equilibrium
effort when there are N + 1 firms is greater.

Example: Increasing Number of Firms Increases Effort. Figure 3 depicts a marginal
cost curve and separate mbN curves for N ∈ {2, 4, 6, 8, 10}. Discontinuities of the mbN
curves are connected with vertical line segments, allowing for customer mixtures. Model
parameters are fixed at (δ, β, µ, π, A,R,E) = (0.99, 0.99, 0.4, 50, 20, 1, 10), the probability
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Figure 3
Equilibria for N ∈ {2, 4, 6, 8, 10}
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Note: Competition increases equilibrium effort.

of a good outcome conditional on a good match is f(e) = e/10, and the cost function
is here taken to be c(e) = 0.1e2.2, so that the graphed marginal cost curve is given by
c′(e) = 0.22e1.2. In Figure 3, there are three equilibria when N = 2, located around
e = 2.8, while the unique equilibrium for N = 10 is located at about e = 7.05.

Example: Competitive Limit. What happens in the limit as N → ∞? We know pk+1 ≤
pk for all k ∈ {1, 2, . . . , N}, but pk ≥ 1 for any k. Indeed, as the number of firms
increases, the measure of customers with a patience other than 1 decreases to zero. In
the limit, all customers fire any firm unless they see a good outcome in the first period of
the match. This creates an effective incentive for high effort for firms. Figure 4 redraws
Figure 3, adding a marginal benefit curve mb∞ for N = ∞. The sequence {mbN (e)}

∞

N=1

converges pointwise to mb∞ as N → ∞. The equilibrium in the limit is located at
e = 7.6.

4.3.2 Discount Factors: Long-Lived Customers Erode Incentives for Effort

Customer patience as described in Proposition 2 is weakly increasing in survival proba-
bility δ. However, this fact alone is insufficient to say what happens to firms’ mb curve
and hence to equilibrium effort. For example, if N = 3, and customers have patience
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Figure 4
Equilibria for N ∈ {2, 4, 6, 8, 10} and in the Limit as N → ∞
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Note: With an infinite number of firms, all customers have patience 1 at every firm.

vector ~p = (p1, p2, p3), should an increase in δ cause p3 to increase by 1, it is ambiguous
whether mb would increase or decrease. Increasing p3 has the direct effect of making
customers less patient, which lowers mb, and also has the indirect effect of lowering the
proportion of a firm’s customers who are on their second or third firm and hence are
more patient; lowering this proportion increases mb. Either effect can dominate.

However, as δ increases to 1, mbN → 0 for all e ∈ (0, E). From equation (7), mbN is
directly proportional to 1− δ, which goes to 0 as δ → 1. Proposition 7 establishes that
for high enough δ, the only equilibrium is located at e = 0.

Proposition 7 For any R > 0 and any parameters (β, µ, π, A,R,E,N), ∃ δ∗ < 1 such
that no nontrivial equilibria exist for δ > δ∗.

Proof From inspection of (7), mbN → 0 for any e as δ → 1. As c(e) > 0 for all e,
δ can be made big enough that mbN < c′(e), and thus e is not an equilibrium location,
for any e. Q.E.D.

As δ becomes large, customers become longer-lived, and so the measure of a firm’s
probationary customers relative to the same firm’s matched customers in any equilibrium
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becomes vanishingly small. As firms do not care which outcome matched customers
experience, their incentive to exert high effort is eroded.

Lowering customers’ survival probability thus encourages higher effort. However,
market participation involves an investment, in sampling firms until a good match is
found. Customers sample even when they could get a higher payoff from their outside
option. Specifically, new customers prefer market participation to their outside option
if and only if

(11) µtA+ µt
δ(tA−R)

1− δ
≥ R.

From equation (11), a decrease in δ then raises the cutoff belief tmin of Proposition A1
below which customers choose their outside option over market participation, and thus
lowering δ sufficiently can eradicate nontrivial equilibria entirely. A marginal decrease
in δ, however, will not eliminate an equilibrium unless (11) holds with equality. That
said, in many examples it is an intermediate level of δ that yields the highest effort
equilibrium. Very high δ erode firm incentives; low δ prompt customers to forgo market
participation.

Similarly, a firm’s incentive to exert high effort increases as its discount factor β
increases. Any positive effort level costs the firm c(e) for each customer it has, confers
no immediate benefit, yet sends a good outcome to some customers that will cause them
to remain with the firm in the future until death. However, given that customers die
each period with probability δ, letting β increase to one makes effort more attractive for
firms and raises the mb curve, equation (7). Given δ < 1, the effect is bounded.

4.3.3 Gains from Trade

In this section, we examine the relationship between the equilibrium firm effort and
the parameters π and A, respectively the firms’ payoff and customers’ payoff to a good
outcome.

π, Firms’ Payoff. Equilibrium effort is increasing in both π, a firm’s per-customer,
per-period payoff, and A, a customer’s payoff to getting a good outcome. From equation
(7), mbN increases at each e ∈ (0, E), and so increasing π raises equilibrium effort, for
fairly obvious reasons. If a nontrivial equilibrium exists, equilibrium effort approaches
E as π increases, all else equal. If a nontrivial equilibrium does not exist, increasing
π eliminates the type of failure of existence seen in Figure A1. If there is a nontrivial
equilibrium located at e < E, the set of nontrivial equilibria will increase in π. These
results are formalized in Proposition 8.

Proposition 8 As π increases, equilibrium effort increases. If customers prefer market
participation to their outside option for belief t∗ = f(e∗), then any e ∈ (e∗, E) can be
supported as an equilibrium if π is made large enough, all else equal.

Proof From equation (7) in section 4.1, mbN is increasing in π for any e at which
customers prefer market participation to their outside option. At such an e, varying π
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from 0 to ∞ varies mbN from 0 to ∞, continuously, and so there exists some value of π
such that mbN = c′(e). Q.E.D.

A, Customers’ Payoff to a Good Outcome. Customer patience is weakly increasing in
A; indeed, p1 increases to ∞ as A → ∞. However, for k > 1, pk is bounded above in
A. This is because when there remain unsampled firms, an increase in A increases both
a customer’s expected payoff to remaining with a firm and her payoff to switching to a
new firm. On her last firm, a customer’s continuation payoff is fixed at R/(1 − δ), and
so an increase in A only raises the expected value to remaining with that firm, causing
patience to increase unboundedly. Proposition 9 states and proves our result.

Proposition 9 (1) p1 increases in A unboundedly. (2) For k > 1, pk is increasing in
A but bounded above by a finite number.

Proof From Proposition 2,

p(Γ) =

















log
(

µ̄(Γ)(1−µ)
µ(1−µ̄(Γ))

)

log(1− t)

















, where µ̄(Γ) =
Γ(1− δ)

t
(

A + δtA
1−δ

− δΓ
) .

p depends on A only through

(12)
µ̄(Γ)

1− µ̄(Γ)
=

(

t(A+ δtA
1−δ

)

Γ(1− δ)
−

δt

1− δ
− 1

)

−1

and is decreasing in µ̄(Γ)/(1 − µ̄(Γ)). Consider a customer on firm k, and adopt the
shorthand µ̄k/(1−µ̄k), where it is understood that Γk = Zk−1(R/(1−δ)). Per Proposition
3, Γk depends on A both directly and through the terms p1, p2, . . . , pk−1. First, note that
outside of a set of measure zero, the terms p1, p2, . . . , pk−1 are invariant in A. Second,
note that when a marginal increase in A causes pj , j < k, to change by one, Γk is
unchanged, as a customer is indifferent between these two adjacent patience levels per
Proposition 2.

Therefore, the effect of a change in A on p(Γ) can be computed directly from (12)
and Proposition 3. Let

λ(p) = 1 +

∑p−1
k=1 µk

∏k−1
j=0 δ(1− µjt)

µ
,

and let

τ(p) =

p
∏

k=0

δ(1− µkt).

Substituting the value of Γk from Proposition 3 into equation (12) gives
(13)

µ̄m

1− µ̄m

=

((

(1− δ)µ
m−1
∑

k=1

λ(pk)
m−1
∏

j=k+1

τ(pj) +
R

t
(

A+ δtA
1−δ

)

m−1
∏

k=1

τ(pk)

)

−1

−
δt

1− δ
− 1

)

−1

.



27

The only expression in (13) that varies in A is R/(t(A+ δtA/(1− δ))), which is de-
creasing, which in turn implies that µ̄m/(1− µ̄m) is decreasing in A and thus that pk is
increasing in A. Clearly, limA→∞ µ̄1/(1− µ̄1) = 0, and so limA→∞ p1 = ∞. By the same
logic, as A → ∞, µ̄m/(1− µ̄m) decreases, but is bounded away from 0 for m ≥ 2. Q.E.D.

If N = 1, increasing A will first decrease the effort played in nontrivial equilibria,
eventually pushing any such equilibria to zero effort. However, if there is more than
one firm, increasing A will have a smaller effect, with even large changes in A becoming
irrelevant to the location of equilibria. For example, if A is increased from 20 to 2×10100

in the example of Figure 3, the unique nontrivial equilibrium with N = 8 shifts from
e∗ = 5.8077 in the former case to e∗ = 5.8066 in the latter. When A = 20, (p2, . . . , p8) =
(5, 4, 3, 3, 2, 2, 2) in both cases, while p1 is 7 when A = 20, and 270 when A = 2× 10100.

4.4 Welfare

Increasing the number of firms increases the equilibrium effort level. Higher effort is
unambiguously better for customers, and unambiguously worse for firms. Firms, in
choosing effort, ignore the benefit of higher effort to customers, and therefore equilib-
rium effort may be below the efficient level. On the other hand, the reputational concerns
compelling firms to exert themselves have, like advertising, no social value, and so equi-
librium effort could be above the efficient level. The effect of increasing competition on
total surplus then depends on which effect dominates.

Let Tm
N (e) denote the measure of customers a firm has who are well matched; the

total surplus per firm is given by Tm
N (e)Af(e)+π−TN(e)c(e). To examine the efficiency

of an equilibrium e∗, consider, for that given (TN(e
∗), Tm

N (e∗)) pair, what effort level
would maximize total surplus. If f(e) = e/E, the efficient effort ê is given by ê =
c′−1[ATm

N (ê)/ETN(ê)]. Then Tm
N (e)/TN(e) = µ(1 + ǫ), where ǫ ∈ (0, (1− µ)/µ) equals

(1− µ)
∑N

k=1(δ
pk − γpk)

∏N
l=k+1 a(pl, e)

1−
∏N

k=1 a(pk, e)
.

Consider the example of section 4.1 and Figure 3; when N = 2, one equilibrium
is located at e = 2.92. In equilibrium, Tm

N (e)/TN (e) = 0.86, and the corresponding
efficient effort level is 0.82. Firms thus exert a higher effort than the efficient level in
equilibrium; the same is true for the cases of N = 4, 6, 8, 10. Indeed, as Tm

N (e)/TN(e)
can be no greater than 1, the location of the efficient effort level can be no greater
than c′−1(A/E), or 0.86 under the example’s parameters, and so increased competition
decreases total surplus; the deadweight loss of firms competing on reputation dominates
the gain customers get from improved outcomes.

However, for parameters (δ, β, µ, π, A,R,E) = (0.99, 0.994, 0.4, 20, 75, 1, 10), when
N = 2, the equilibrium effort is 1.47 and the efficient effort would be 2.34; when N = 4,
the equilibrium effort is 2.20 and the efficient effort 2.55; when N = 6, the equilibrium
effort is almost exactly at the efficient level of 2.611. The equilibrium effort increases
away from the efficient level as N increases from 6. Still other examples could be con-
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structed where even the equilibrium effort with an infinite number of firms is inefficiently
low; in these example, competition would uniformly increase the total surplus.

A, a customer’s gain from a good outcome over a bad outcome, has only a negligible
effect on the location of equilibria (see section 4.3.3), yet is crucial in determining the
efficient effort. Indeed, raising (lowering) A sufficiently would destroy equilibria only
in knife-edge cases and move them only slightly, while making any interior equilibrium
effort level inefficiently low (high).

Finally, while searching has no explicit cost here, the increase in customer welfare
resulting from an increase in the number of firms might be at least partially offset by
the experimentation costs resulting from more frequent switching.

5 Conclusion

In a 2005 statement on the closing of its investigation into an allegedly anticompetitive
market structure in the Vermont home health care industry, the U.S. Department of
Justice (2005) claimed that “competition motivates providers to improve quality to
attract customers and referral sources, invest in new technology, and train qualified
staff.” The investigation did uncover evidence suggesting that home health providers
in Vermont, which operated in a virtually monopolistic environment, might not have
provided the same quality of service as their counterparts in neighboring states with
more competitive markets (see Rutland Herald, November 24, 2005).

This paper identifies proconsumer effects of competition amongst credence-good
providers; it may help explain why Vermont home health customers experienced poor
outcomes, and provide an additional argument for more lax policies on entering such
markets. As the DOJ suggested, firms in markets with few competitors are less mo-
tivated to exert themselves in serving customers who have bleak prospects away from
that firm, while firms in highly competitive markets try harder to impress customers who
have little patience for poor results. As the number of firms in a market increases, the
effort played in equilibrium increases as well. Thus, customers are served most diligently
by experts in a competitive market.

This analysis suggests at least two empirical projects. One, if the model discussed
here is relevant, then customers who describe themselves as dissatisfied with, say, their
mechanic should be longer tenured in that relationship the less competitive their market
is, whereas there should be no relationship between average tenure length and market
competitiveness for satisfied customers. Two, in more competitive markets we expect
greater firm effort, but less-patient customers. The relationship between average tenure
with a firm and market competitiveness is thus ambiguous, and an empirical question.
It could, in fact, be the case that markets in which competition among firms is high
see relatively short average tenure among customers, as the effect of competition on
customer impatience dominates that on higher firm effort.
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Appendix: Existence of Equilibria

A.1 Proofs

Here we prove the results on the existence of equilibrium mentioned in the body of the
paper. First, we allow customers to mix between patience levels if indifferent. Doing so
is important for the existence of equilibria, as the firms’ equilibrium marginal benefit of
effort is discontinuous.

A.1.1 Mixed Equilibria

If N = 2 and at effort level ê a fraction ζ of customers play (p1, p2) while a fraction 1−ζ
play (p1, p̃2), then letting

M(p, e) = µf ′(e)βδ
π − c(e)

1− βδ
γ(e)p−11− βp

1− β
= mb(p, e)

1− a(p)

1− δ
,

the marginal benefit to effort at ê is

mb(ζ) =
(1− δ)(ζM(p2, ê) + (1− ζ)M(p̃2, ê) + (ζa(p2) + (1− ζ)a(p̃2))M(p1, ê))

ζ(1− a(p1)a(p2)) + (1− ζ)(1− a(p1)a(p̃2))
.

Clearly, mb(ζ) ranges continuously from α(p1)mb(p1, ê)+α(p2)mb(p2, ê) to α(p1)mb(p1, ê)+
α(p̃2)mb(p̃2, ê), and thus spans the discontinuity.

A.1.2 Existence of Nontrivial Equilibria

Interior equilibria lie at the intersection of the mbN andmc curves; the former is decreas-
ing and continuous in effort except at a finite number of points, which mixed strategies
effectively bridge; the latter is increasing and continuous in effort. It is obvious from
inspection that if pk > 0 for k ∈ {1, 2, . . . , N}, then mbN > 0 for low values of e while
mc(0) = 0, and it is easy to parameterize the model so that mbN |e=E ≤ 0 and c′(E) > 0.
However, it may be the case that for low levels of firm effort customers prefer not to
enter the market, instead taking their outside option in each period. mbN = 0 for any
effort level at which customers do not participate in the market.

Specifically, there exists some number tmin such that customers enter the market for
beliefs t ∈ (tmin, 1] and opt out for t ∈ [0, tmin]. Then, if emin = f−1(tmin), the mbN curve
will take the value 0 over the range [0, emin], and the mbN curve may or may not lie
above the mc curve at emin. If, however, emin is very close to 0, then at emin we have
mbN > mc, and thus firms find it optimal to invest in at least some effort. Proposition
A1 provides for the existence of this cutoff belief emin.

Proposition A1 For any model parameters (δ, β, µ, A, π, R,N,E), there exists some
tmin ∈ (0, 1] such that if customers have a belief t > tmin, they optimally choose to enter
the market, while for beliefs t ≤ tmin not entering is optimal.
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Proof From Proposition 1 in section 3.1, customers prefer market participation to
their outside option if and only if W [1, µ,Γ] ≥ Γ. The “if” direction is obvious; to
see the “only if” direction, a direct calculation yields W [k, µ,Γ] ≥ W [k − 1, µ,Γ] ⇒
W [k − 1, µ,Γ] ≥ W [k − 2, µ,Γ], which in turn implies that if k > 1 is the optimal
patience, then W [1, µ,Γ] > Γ. From Proposition 1,

W [1, µ,Γ] ≥ Γ ⇐⇒ µ >
R

t
[

A+ δtA
1−δ

− δR
1−δ

] ⇐⇒

A

(

µt+
µδt2

1− δ

)

−R

(

µδt

1− δ
+ 1

)

> 0.(A1)

Direct calculation gives that the derivative of the left-hand side of (A1) with re-
spect to t is given by A(µ + 2tµδ/(1− δ))− Rµδ/(1− δ), which is greater than zero if
A(µ+ tµδ/(1−δ))−Rµδ/(1−δ) > 0, a condition implied by (A1). Therefore, if a belief
t merits entering the market, then so does any belief t′ > t. It is obvious that for very
low beliefs, not entering is optimal; the proposition follows. Q.E.D.

Equilibria may not exist if mbN |e=emin
< c′(emin) and the mbN curve lies everywhere

below the mc curve. Figure A1 gives an example in which this happens. If mbN |e=emin
>

c′(emin), as is guaranteed if emin is sufficiently low, a nontrivial equilibrium does exist.
However, if mbN |e=E > c′(E), there may fail to be an interior equilibrium. Figure A2
gives such an example. Here, there is a nontrivial equilibrium, at e = E, but it does not
solve the firm’s problem as described in previous sections.

Figure A1
No Nontrivial Equilibrium; Customers Enter

the Market Only if e > 0.42
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Figure A2
No Interior Equilibrium
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In light of Figures A1 and A2, Proposition 5 says that if the good outcome achiev-
able in the market (A) is high enough relative to the customers’ outside option (R), a
nontrivial equilibrium exists. If, also, the cost curve is sufficiently steep to make very
high levels of effort unattractive to the firms, the solution is interior.

Proposition A2 (Proposition 7 as a corollary to Proposition A1) For any

parameters ~Ψ = (δ, β, µ, π,N,E), there exists a constant K(~Ψ) such that if A/R > K(~Ψ)
a nontrivial equilibrium exists. If, furthermore, c(E) ≥ π, an interior equilibrium exists.
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Proof From Proposition A1, customers prefer market participation to their outside op-
tion if equation (A1) holds. Thus, for any t > 0, customers enter if A/R is high enough;
if customers enter, mbN > 0. Because mc → 0 as e → 0, there is some ẽ > 0 such that
mbN |ẽ > mc(ẽ) if customers enter. The fact that c(E) ≥ π ensures that mbN |e=E ≤ 0,
as the marginal benefit is directly proportional to π − c(e). Q.E.D.

Equilibria may still exist even for low A/R, particularly if effort is not very costly to
firms. Other existence results could be derived in which discount factors and the firms’
gains to trade are considered.

A.2 Customers are Allowed to Return to Firms

This section resolves the paper’s main model while relaxing the assumption that it is
prohibitively costly to return to an already fired firm. The results of this section are
used in the example of section 2.2.1.

Suppose there are two firms, A and B, and that all new customers have patience 2.
Let pA describe the set measure of customers who are a good match for firm A and who
first sample firm A, let pAB be the measure of probationary good matches for firm A
who first sampled A and are now at B, and so on. The problem of firm A is then

V [pA, pB, pAB, pBA, pABA, pBAB, pBABA, m] = max
e,p′

AB
,p′

BAB
,m′

T (π − c(e)) + βV [·′]

subject to p′A =
1

2
µ,

p′B =
1

2
µ,

p′BA = pBδ(1− µf(eB)),

p′AB = pAδ(1− f(e)),

p′BAB = pBAδ(1− f(e)),

p′ABA = pABδ(1− µf(eB)),

p′BABA = pBABδ
µ− µf(eB)

1− µf(eB)
(1− f(eB)),

m′ = f(e)δ(pA + pBA + pABA + pBABA).

Assigning Lagrange multipliers λ, η, and θ for the fourth, fifth, and eighth constraints,
respectively (the other five constraints are irrelevant to the firm’s problem), we get the
following first-order conditions:

e : c′(e) =
1

T
δf ′(e)(θ(pA + pBA + pABA + pBABA)− λpA − ηpBA),(A2)

m′ : βVm[p
′

2.5, p
′

2, p
′

1.5, p
′

1, m
′] = θ,

p′AB : βVpAB
[·′] = λ,

p′BAB : βVpBAB
[·′] = η.
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Repeated substitution gives us the values for Vm, VpAB
, and VpBAB

under the assumption
of steady-state values of effort of e∗A (own) and e∗B (rival):

Vm =
π − c(e∗A)

1− βδ
=

θ

β
,

VpAB
= βδ(1− µf(e∗B))

(

π − c(e∗A) + βδf(e∗A)
π − c(e∗A)

1− βδ

)

=
λ

β
,

VpBAB
= βδ

1− 2µf(e∗B) + µf(e∗B)
2

1− µf(e∗B)

(

π − c(e∗A) + βδf(e∗A)
π − c(e∗A)

1− βδ

)

=
η

β
.

Reasoning similar to that of section 3.2.1 gives us steady-state values of T , pA, pBA,
pABA, and pBABA, under the assumption that e∗A = e∗B = e∗:

p∗A = p∗B =
µ

2
,

p∗BA = p∗AB =
µ

2
δ(1− µf(e∗)),

p∗ABA = p∗BAB =
µ

2
δ2(1− µf(e∗))(1− f(e∗)),

p∗BABA = p∗ABAB =
µ

2
δ3(1− f(e∗))(1− 2µf(e∗) + µf(e∗)2),

T ∗ =
1

2(1− δ)
(1− δ4(1− 2µf(e∗)− µf(e∗)2)2).

Substituting the previous eight equations into (A2) gives a necessary condition for
equilibrium effort. Under the parameterization in section 2.2.1, it is direct to calculate
that e∗ = 5 is an equilibrium.

A.3 Three Firms

Now suppose that new customers choose one of three firms at random, and a customer
who never gets a good outcome cycles through the remaining two firms, returns to her
original firm, and then cycles through the two remaining firms again, and so on. In
the example of section 2.2.1, customers still have patience 2. Calling the remaining two
firms B and C, firm A’s problem is

V [·] = max
e,p′

AB
,p′

BAB
,m′

T (π − c(e)) + βV [·′]

subject to p′AB = pA
1

2
δ(1− f(e)),

p′AC = pA
1

2
δ(1− f(e)),

p′CAB = pCAδ(1− f(e)),

p′BAC = pBAδ(1− f(e)),

m′ = f(e)δ(pA + pBA + pCA + pBCA + pCBA + pABCA

+ pACBA + pBACBA + pCABCA + pBCABCA + pCBACBA).
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Let λi be the Lagrange multiplier associated with the ith constraint, i = 1, 2, 3, 4,
and let θ be the multiplier associated with the fifth constraint. Constraints that are
orthogonal to the firm’s problem are omitted. We get the following first-order conditions:

e : c′(e) =
1

T
δf ′(e)

(

θ(pA + pBA + pCA + pBCA + pCBA + pABCA + pACBA(A3)

+ pBACBA + pCABCA + pBCABCA + pCBACBA)

− λ1
pA
2

− λ2
pA
2

− λ3pCA − λ4pBA

)

,

m′ : βVm[·
′] = θ,

p′AB : βVpAB
[·′] = λ1,

p′AC : βVpAC
[·′] = λ2,

p′CAB : βVpCAB
[·′] = λ3,

p′BAC : βVpBAC
[·′] = λ4.

In a symmetric steady state (e∗A = e∗B = e∗C = e∗), we have the following values of
state variables and Lagrange multipliers:

Vm =
π − c(e∗A)

1− βδ
=

θ

β
,

VpAB
= β2δ2(1− µf(e∗))2

(

π − c(e∗A) + βδf(e∗)
π − c(e∗)

1− βδ

)

=
λ1

β
,

VpAC
= β2δ2(1− µf(e∗))2

(

π − c(e∗) + βδf(e∗)
π − c(e∗)

1− βδ

)

=
λ2

β
,

VpCAB
= β2δ2(1− 2µf(e∗C) + µf(e∗C)

2)

(

π − c(e∗A) + βδf(e∗A)
π − c(e∗A)

1− βδ

)

=
λ3

β
,

VpBAC
= β2δ2(1− 2µf(e∗C) + µf(e∗C)

2)

(

π − c(e∗A) + βδf(e∗A)
π − c(e∗A)

1− βδ

)

=
λ4

β
,

p∗A =
µ

3
,

p∗BA =
µ

3
δ(1− µf(e∗)),

p∗CA =
µ

3
δ(1− µf(e∗)),

p∗BCA =
µ

3
δ2(1− µf(e∗))2,

p∗CBA =
µ

3
δ2(1− µf(e∗))2,

p∗ABCA =
µ

3
δ3(1− µf(e∗))2(1− f(e∗)),

p∗ACBA =
µ

3
δ3(1− µf(e∗))2(1− f(e∗)),

p∗BACBA =
µ

3
δ4(1− µf(e∗))(1− 2µf(e∗) + µf(e∗)2)(1− f(e∗)),
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p∗CABCA =
µ

3
δ4(1− µf(e∗))(1− 2µf(e∗) + µf(e∗)2)(1− f(e∗)),

p∗BCABCA =
µ

3
δ5(1− 2µf(e∗B) + µf(e∗B)

2)2(1− f(e∗)),

p∗CBACBA =
µ

3
δ5(1− 2µf(e∗B) + µf(e∗B)

2)2(1− f(e∗)),

T ∗ =
1

3(1− δ)
(1− δ6(1− 2µf(e)− µf(e)2)3).

Substituting the previous 17 equalities into equation (A3) yields a necessary condition
for equilibrium effort. Once again, given the parameterization in section 2.2.1, it is direct
to calculate that e∗ = 6.55 is an equilibrium effort level. Finally, we confirm that with
e = 6.55, all customers continue to have patience 2.
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