Homework 4 due 10/2/2007

Problem 1 (Weierstrass theorem). (Sundaram, page 98 #13) A monopolist faces a downward sloping inverse-demand curve p(x) that satisfies $p(0) < \infty$ and $p(x) \ge 0$ for all $x \in \mathbb{R}_+$. The cost of producing x units is given by $c(x) \ge 0$, where c(0) = 0. Suppose $p(\cdot)$ and $c(\cdot)$ are both continuous on \mathbb{R}_+ . The monopolist wishes to maximize profit, $\pi(x) = xp(x) - c(x)$, subject to the constraint $x \ge 0$.

a) Suppose there is $x^* > 0$ such that $p(x^*) = 0$. Show that the Weierstrass theorem can be used to prove the existence of a solution to this problem.

b) Now suppose instead there is $\tilde{x} > 0$ such that $c(x) \ge xp(x)$ for all $x \ge \tilde{x}$. Show, once again, that the Weierstrass theorem can be used to prove existence of a solution.

c) What about the case where $p(x) = \bar{p}$ for all x (the demand curve is infinitely elastic) and $c(x) \to \infty$ as $x \to \infty$?

Problem 2 (Weierstrass theorem II). (Sundaram, page 97 #2) Suppose $A \subset \mathbb{R}^n$ is a set consisting of a finite number of points $\{x_1, x_2, ..., x_p\}$. Show that any function $f : A \to \mathbb{R}$ has a maximum and a minimum on A. Is this result implied by the Weierstrass theorem? Explain.

Problem 3 (Weierstrass theorem III). (Sundaram, page 97 #1) Prove or counter the following statement:

If f is a continuous real-valued function on a bounded (but not necessarily closed) set A, then $\sup f(A)$ is finite. (nb. $\sup f(A) = \{y \in \mathbb{R} : y = f(x) \text{ for some } x \in A\}$).

Problem 4 (Sequences). (Sundaram, page 67 #3) Let $\{x_n\}$, $\{y_n\}$ be sequences in \mathbb{R}^n such that $x_n \to x$ and $y_n \to y$. For each n, let $z_n = x_n + y_n$, and let $w_n = x_n * y_n$. Show that $z_n \to (x + y)$ and $w_n \to x * y$.

Problem 5 (Sequences II). Give an example of a sequence in Euclidean space $(\mathbb{R}, |\cdot|)$ which has

- a) exactly zero subsequential limits
- b) exactly one subsequential limit
- c) exactly two distinct subsequential limits
- d) exactly three distinct subsequential limits
- e) exactly n distinct subsequential limits, for $n \in \mathbb{Z}$.

(note: for problem 5, you do not need to show any work)

Problem 6 (Sequences III). For this question, you may use the fact that if $\{x_n\}$ is increasing $(x_{n+1} > x_n)$ and is bounded above, then $x_n \to \sup\{x_n\}$, while if $\{x_n\}$ is decreasing and bounded below, $x_n \to \inf\{x_n\}$.

Prove that the following sequences converge:

a)
$$\{x_n : x_n = \frac{n^2}{n^2+1}\}$$

b) $\{x_n : x_n = \frac{n^2-n}{n^3+1}\}$
c) $\{x_n : x_n = \frac{\sin(n)}{n}\}$
d) $\{x_n : x_n = \frac{2^n}{n!}\}$