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Homework 5
due 10/6/08

Problem 1 (Continuous functions) (Sundaram, page 72)

f(x) =

{
x, if x is rational

1− x, if x is irrational

Show that f is continuous at 1
2 but discontinuous at every other point in its domain.

Problem 2 (Sequences) Show that no unbounded sequence {xn} ⊂ R converges to a point p ∈ R

Problem 3 (Derivatives)

a. Find the derivative of the function f : R→ R, f(x) = |x| at any point x ∈ (−∞, 0)∪ (0,∞), and show

that the function is not differentiable at 0.

b. Show that the function g : R→ R, g(x) = x|x| is differentiable for all x ∈ R. What is the derivative?

Problem 4 (Continuity and inverse images) (Sundaram, page 71)

Suppose f : Rn → R is a continuous function. Show that the set

{x ∈ Rn : f(x) = 0}

is a closed set.

Problem 5 (lim inf, lim sup) (Sundaram page 68) Find the lim sup and the lim inf of each of the following

sequences:

a. xn = (−1)n, n = 1, 2, 3, ...

b. xn = (−1)n + 1
n , n = 1, 2, 3, ...

c. {1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, ...}
d. xn = 1 is n is odd, and xn = −n

2 if n is even

Problem 6 (Derivatives II) Find the derivative of each of the following functions with domain and

codomain R, from the definition of derivative1:

a. f(x) = 2x3

b. f(x) = 12x−2

b. f(x) = 3x + 2

Problem 7 (Taylor expansions I)

a. Approximate the function f(x) = ex around x = 0 with separate Taylor expansions of degrees 1,2,

and 3 (you may use without proof the fact that f (n)(0) = 1 for all n). Call these g1(x), g2(x), and g3(x).

b. Calculate the interval over which gi(x) is no more than 10% away from f(x), that is, in which
|gi(x)−f(x)|
|f(x)| ≤ .1, for i = 1, 2, 3 (you can approximate this with the help of a computer if necessary).

c. Repeat parts a and b for f(x) =
√

x + 1. (you need not prove what f (n)(x) is).
1The point of this problem is to demonstrate comfort working with the definition. Do not simply write out what the

derivative is.
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d. Repeat parts a and b for f(x) = ln(x), this time expanded about x = 1 (you need not prove what

f (n)(x) is).

Problem 8 (Taylor expansions II)

Suppose you needed to calculate 4.2
3
2 without using a computer. Show that this is possible via a first

degree Taylor series expansion of f(x) = x
3
2 about x = 4. How close is your approximation to the actual

value?


