Perfect Bayesian equilibria

- For an extensive form game Γ , recall that H_i denotes the set of all of player i's information sets, and that $h \in H_1$ represents one particular information set.
- Player i's *beliefs* are a function $\mu_i : h \to [0, 1]$ satisfying $\sum_{x \in h} \mu_i(x) = 1$ for all $h \in H_i$.
- So for all $x \in h$, $\mu_i(x)$ represents the probability *i* assigns to node *x* being reached, conditional on information set *h* being reached.
- Let $\mu = (\mu_1, \mu_2, ..., \mu_n)$ describe all players' beliefs together.
- Given that strategy profile σ is played, let $P_{\sigma}(x)$ denote the probability of actually reaching node x, and $P_{\sigma}(h) = \sum_{x \in h} P_{\sigma}(x)$ denote the probability information set h is reached.
- **Definition:** beliefs μ are *Bayesian* given strategy profile σ if:

$$\mu_i(x) = rac{P_\sigma(x)}{P_\sigma(h)}$$
 whenever $P_\sigma(h) > 0$

• Then, say that strategy *i* is rational for player *i* given $\mu_i \sigma_{-i}$ if at each of his information sets the following holds:

$$\sum_{x \in h} \mu_i(x) u_i(\sigma_i, \sigma_{-i}|x) \ge \sum_{x \in h} \mu_i(x) u_i(\sigma'_i, \sigma_{-i}|x) \quad \text{for all } \sigma'_i \tag{1}$$

- Though (1) looks complicated, it amounts to the usual condition that a strategy is rational only if there is no alternate strategy that would yield a higher payoff, holding fixed what everyone else is doing (and, here, holding fixed a set of beliefs).
- Say strategy profile σ is sequentially rational given beliefs μ if, for all players and all information sets, σ_i is rational.

Definition: A perfect Bayesian equilibrium is a strategy-belief pair (σ, μ) satisfying:

- 1. μ is Bayesian given σ (i.e. comes from Bayes' rule whenever possible)
- 2. σ is sequentially rational given μ

While we have not thought of beliefs as essential to defining Nash equilibria, we can characterize what would be true of any beliefs in a Nash equilibrium. Contrast the definition of a PBE with that of a NE:

Definition: A Nash equilibrium is a strategy-belief pair (σ, μ) satisfying:

- 1. μ is Bayesian given σ (i.e. comes from Bayes' rule whenever possible)
- 2. σ is rational at each information set on the equilibrium path induced by σ , given σ_{-i} and μ